We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-␦ (PKC␦) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKC␦ activity. To understand the function of activated PKC␦ in apoptosis, we have used the PKC␦-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKC␦ also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKC␦ cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKC␦ may be required for cleavage. PKC␣ and PKC1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with Gö 6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKC␦ is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.
Rat submandibular salivary gland acinar cells were transfected by CaPO4 precipitation using a plasmid containing a replication-defective simian virus (SV40) genome. Out of 27 clonal cell lines, two were shown to have moderate to high levels of cytodifferentiation and salivary gland acinar cell function. Functional studies with the two cell lines indicated that the beta-adrenergic agonist, isoproterenol, vasoactive intestinal peptide, and prostaglandin E1 were effective activators of intracellular cyclic AMP production. Epinephrine, norepinephrine, phenylephrine, acetylcholine, and P2U-purinoceptor agonists were effective in increasing inositol phosphate production and intracellular free calcium levels, whereas substance P was without effect. Utilizing indirect immunofluorescence analysis, both cell lines were shown to express glutamine/glutamic acid-rich proteins, a submandibular acinar cell specific secretory protein family. Electron microscopic evaluation documented the maintenance of tripartite junctional complexes, cellular polarization, and the presence of moderate amounts of secretory granules and rough endoplasmic reticulum. The two cell lines had doubling times of 25 h.
Accumulating evidence suggests that specific isoforms of PKC may function to promote apoptosis. We show here that activation of the conventional and novel isoforms of PKC with 12-O-tetradecanoyl phorbol-13-ester (TPA) induces apoptosis in salivary acinar cells as indicated by DNA fragmentation and activation of caspase-3. TPA-induced DNA fragmentation, caspase-3 activation, and morphologic indicators of apoptosis, can be enhanced by pretreatment of cells with the calpain inhibitor, calpeptin, prior to the addition of TPA. Analysis of PKC isoform expression by immunoblot shows that TPAinduced downregulation of PKCa and PKCd is delayed in cells pre-treated with calpeptin, and that this correlates with an increase of these isoforms in the membrane fraction of cells. TPA-induced apoptosis is accompanied by biphasic activation of the c-jun-N-terminal kinase (JNK) pathway and inactivation of the extracellular regulated kinase (ERK) pathway. Expression of constitutively activated PKCa or PKCd, but not kinase negative mutants of these isoforms, or constitutively activated PKCe, induces apoptosis in salivary acinar cells, suggesting a role for these isoforms in TPAinduced apoptosis. These studies demonstrate that activation of PKC is sufficient for initiation of an apoptotic program in salivary acinar cells.
Rat parotid salivary gland acinar cells were transfected by CaPO4 precipitation using a plasmid containing a replication-defective simian virus (SV40) genome. Out of 30 clonal cell lines, 2 were shown to have moderate to high levels of cytodifferentiation and salivary gland acinar cell function. Functional studies with the two cell lines indicated that the beta-adrenergic agonist (isoproterenol), vasoactive intestinal peptide prostaglandin E1, and forskolin were effective activators of intracellular cyclic adenosine 3':5'-cyclic monophosphate production. Phenylephrine, carbamylcholine, and UTP were effective in increasing inositol phosphate production and intracellular free calcium levels, whereas substance P was without affect. Utilizing indirect immunofluorescence analysis, both cell lines were shown to express the SV40 large T antigen. Electron microscopic evaluation documented moderate to high levels of cytodifferentiation with the maintenance of tripartite junctional complexes, cellular polarization, and presence of moderate amounts of secretory granules and rough endoplasmic reticulum. The two cell lines had doubling times of 22 and 36 h, respectively.
We have examined the ability of etoposide to induce apoptosis in two recently established rat salivary acinar cell lines. Etoposide induced apoptosis in the parotid C5 cell line as evidenced by the appearance of cytoplasmic blebbing and nuclear condensation, DNA fragmentation and cleavage of PARP. Etoposide also induced activation of c-jun N-terminal kinase (JNK) in parotid C5 cells by 4 h after treatment, with maximal activation at 8 - 10 h. Coincident with activation of JNK, the amount of activated ERK1 and ERK2 decreased in etoposide-treated parotid C5 cells. In contrast to the parotid C5 cells, the vast majority of submandibular C6 cells appeared to be resistant to etoposide-induced apoptosis. Likewise, activation of JNKs was not observed in etoposide-treated submandibular C6 cells, and the amount of activated ERK1 and ERK2 decreased only slightly. Etoposide treatment of either cell line had no effect upon the activation of p38. Treatment of the parotid C5 cells with Z-VAD-FMK, a caspase inhibitor, inhibited etoposide-induced activation of JNK and DNA fragmentation. These data suggest that etoposide may induce apoptosis in parotid C5 cells by activating JNKs and suppressing the activation of ERKs, thus creating an imbalance in these two signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.