Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
The 2-thiouridine (s 2 U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis IMPORTANCEThe 2-thiouridine (s 2 U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s 2 U in Escherichia coli requires seven proteins: the cysteine desulfurase IscS, the thiouridylase MnmA, and five intermediate sulfur-relay enzymes (TusABCDE). Bacillus subtilis and most Gram-positive bacteria lack a complete set of biosynthetic components. Interestingly, the mnmA coding sequence is located adjacent to yrvO, encoding a cysteine desulfurase. In this work, we provide evidence that the B. subtilis YrvO is able to transfer sulfur directly to MnmA. Both proteins are sufficient for s 2 U biosynthesis in a pathway independent of the one used in E. coli. P osttranscriptional RNA modifications are found among all organisms and are essential for their cellular function. More than 100 RNA modifications have been identified thus far which have a variety of physiological functions (1). In particular, posttranscriptional modifications of tRNA are often necessary for translational fidelity and efficiency, especially those found in anticodon bases. The third base in the anticodon is deemed the wobble position, as it is bound more loosely to the ribosome than the first two. Consequently, wobble bases have greater flexibility, allowing them to make noncanonical base pairs, leading to a greater chance of amino acid misincorporation into a growing peptide chain. An explanation of how this phenomenon is overcome is provided by the modified wobble hypothesis, which states that certain base modifications have evolved to adjust the anticodon shape, either to limit or to enable the occurrence of wobble pairing (2).The modification of the wobble (34th position) in glutamate (Glu), glutamine (Gln), and lysine (Lys) tRNA molecules produces 5-methyl-2-thiouridine derivatives (xm 5 s 2 U) (Fig. 1). Thiolation of the wobble uridine places the base in an anti, C-3=-endo, gauche conformation, thus forming a rigid structure, which increases its affinity for pairing with adenosine and thereby yields higher accuracy in the corresponding peptide sequence. Additionally, this modification stabilizes the anticodon structures and confers the tRNA molecule's ability to bind to the ribosome. Tighter ribosomal binding to tRNA subsequently improves reading frame maintenance and deficiencies in the translational process (2-5). Lack of the 2-thiouridine (s 2 U) modification in tRNA causes growth defects in bacteria attributed to accumulation of frameshifting during translation (6). In humans, mutations within the gene coding for the 2-thiouridylase TrmU, responsible for the sulfur insertion step, has been associated with acute in...
Acidic pH arrests the growth of Mycobacterium tuberculosis in vitro (pH < 5.8) and is thought to significantly contribute to the ability of macrophages to control M. tuberculosis replication. However, this pathogen has been shown to survive and even slowly replicate within macrophage phagolysosomes (pH 4.5 to 5) [M. S. Gomes et al., Infect. Immun. 67, 3199–3206 (1999)] [S. Levitte et al., Cell Host Microbe 20, 250–258 (2016)]. Here, we demonstrate that M. tuberculosis can grow at acidic pH, as low as pH 4.5, in the presence of host-relevant lipids. We show that lack of phosphoenolpyruvate carboxykinase and isocitrate lyase, two enzymes necessary for lipid assimilation, is cidal to M. tuberculosis in the presence of oleic acid at acidic pH. Metabolomic analysis revealed that M. tuberculosis responds to acidic pH by altering its metabolism to preferentially assimilate lipids such as oleic acid over carbohydrates such as glycerol. We show that the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is impaired in acid-exposed M. tuberculosis likely contributing to a reduction in glycolytic flux. The generation of endogenous reactive oxygen species at acidic pH is consistent with the inhibition of GAPDH, an enzyme well-known to be sensitive to oxidation. This work shows that M. tuberculosis alters its carbon diet in response to pH and provides a greater understanding of the physiology of this pathogen during acid stress.
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
The biosynthesis of Fe−S clusters and other thio-cofactors requires the participation of redox agents. A shared feature in these pathways is the formation of transient protein persulfides, which are susceptible to reduction by artificial reducing agents commonly used in reactions in vitro. These agents modulate the reactivity and catalytic efficiency of biosynthetic reactions and, in some cases, skew the enzymes' kinetic behavior, bypassing sulfur acceptors known to be critical for the functionality of these pathways in vivo. Here, we provide kinetic evidence for the selective reactivity of the Bacillus subtilis Trx (thioredoxin) system toward proteinbound persulfide intermediates. Our results demonstrate that the redox flux of the Trx system modulates the rate of sulfide production in cysteine desulfurase assays. Likewise, the activity of the Trx system is dependent on the rate of persulfide formation, suggesting the occurrence of coupled reaction schemes between both enzymatic systems in vitro. Inactivation of TrxA (thioredoxin) or TrxR (thioredoxin reductase) impairs the activity of Fe−S enzymes in B. subtilis, indicating the involvement of the Trx system in Fe−S cluster metabolism. Surprisingly, biochemical characterization of TrxA reveals that this enzyme is able to coordinate Fe−S species, resulting in the loss of its reductase activity. The inactivation of TrxA through the coordination of a labile cluster, combined with its proposed role as a physiological reducing agent in sulfur transfer pathways, suggests a model for redox regulation. These findings provide a potential link between redox regulation and Fe−S metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.