We demonstrate that in humans, two metalloproteases, ADAMTS-9 (1935 amino acids) and ADAMTS-20 (1911 amino acids) are orthologs of GON-1, an ADAMTS protease required for gonadal morphogenesis in Caenorhabditis elegans. ADAMTS-9 and ADAMTS-20 have an identical modular structure, are distinct in possessing 15 TSRs and a unique C-terminal domain, and have a similar gene structure, suggesting that they comprise a new subfamily of human ADAMTS proteases. AD-AMTS20 is very sparingly expressed, although it is detectable in epithelial cells of the breast and lung. However, ADAMTS9 is highly expressed in embryonic and adult tissues, and therefore we characterized the AD-AMTS-9 protein further. Although the ADAMTS-9 zymogen has many proprotein convertase processing sites, pulse-chase analysis, site-directed mutagenesis, and amino acid sequencing demonstrated that maturation to the active form occurs by selective proprotein convertase (e.g. furin) cleavage of the Arg 287 -Phe 288 bond. Although lacking a transmembrane sequence, ADAMTS-9 is retained near the cell surface as well as in the ECM of transiently transfected COS-1 and 293 cells. COS-1 cells transfected with ADAMTS9 (but not vector-transfected cells) proteolytically cleaved bovine versican and aggrecan core proteins at the Glu 441 -Ala 442 bond of versican V1 and the Glu 1771 -Ala 1772 bond of aggrecan, respectively. In contrast, the ADAMTS-9 catalytic domain alone was neither localized to the cell surface nor able to confer these proteolytic activities on cells, demonstrating that the ancillary domains of ADAMTS-9, including the TSRs, are required both for specific extracellular localization and for its versicanase and aggrecanase activities.
We describe the discovery and characterization of AD-AMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. AD-AMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. Nterminal sequencing and treatment with decanoyl-ArgVal-Lys-Arg-chloromethylketone indicate that the AD-AMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg 64 2Gly and Arg 233 2Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of ␣ 2 -macroglobulin, although physiological substrates are presently unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.