The primary goal of the Second Wind Forecast Improvement Project (WFIP2) is to advance the state-of-the-art of wind energy forecasting in complex terrain. To achieve this goal, a comprehensive 18-month field measurement campaign was conducted in the region of the Columbia River basin. The observations were used to diagnose and quantify systematic forecast errors in the operational High-Resolution Rapid Refresh (HRRR) model during weather events of particular concern to wind energy forecasting. Examples of such events are cold pools, gap flows, thermal troughs/marine pushes, mountain waves, and topographic wakes. WFIP2 model development has focused on the boundary layer and surface-layer schemes, cloud–radiation interaction, the representation of drag associated with subgrid-scale topography, and the representation of wind farms in the HRRR. Additionally, refinements to numerical methods have helped to improve some of the common forecast error modes, especially the high wind speed biases associated with early erosion of mountain–valley cold pools. This study describes the model development and testing undertaken during WFIP2 and demonstrates forecast improvements. Specifically, WFIP2 found that mean absolute errors in rotor-layer wind speed forecasts could be reduced by 5%–20% in winter by improving the turbulent mixing lengths, horizontal diffusion, and gravity wave drag. The model improvements made in WFIP2 are also shown to be applicable to regions outside of complex terrain. Ongoing and future challenges in model development will also be discussed.
This review paper explores the field of mesoscale to microscale modeling over complex terrain as it traverses multiple so-called gray zones. In an attempt to bridge the gap between previous large-scale and small-scale modeling efforts, atmospheric simulations are being run at an unprecedented range of resolutions. The gray zone is the range of grid resolutions where particular features are neither subgrid nor fully resolved, but rather are partially resolved. The definition of a gray zone depends strongly on the feature being represented and its relationship to the model resolution. This paper explores three gray zones relevant to simulations over complex terrain: turbulence, convection, and topography. Taken together, these may be referred to as the gray continuum. The focus is on horizontal grid resolutions from ∼10 km to ∼10 m. In each case, the challenges are presented together with recent progress in the literature. A common theme is to address cross-scale interaction and scale-awareness in parameterization schemes. How numerical models are designed to cross these gray zones is critical to complex terrain applications in numerical weather prediction, wind resource forecasting, and regional climate modeling, among others.
This paper describes a three-dimensional immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two interpolation methods—trilinear and inverse distance weighting (IDW)—are used at the core of the IBM algorithm. This work expands on the previous two-dimensional IBM algorithm of Lundquist et al., which uses bilinear interpolation. Simulations of flow over a three-dimensional hill are performed with WRF’s native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. IDW proves more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm fails. This capability is demonstrated by using the IDW core to model flow in Oklahoma City, Oklahoma, from intensive observation period 3 (IOP3) of the Joint Urban 2003 field campaign. Flow in Oklahoma City is simulated concurrently with an outer domain with flat terrain using one-way nesting to generate a turbulent flow field. Results from the IBM-WRF simulation of IOP3 compare well with observations from the field campaign, as well as with results from an urban computational fluid dynamics code, Finite Element Model in 3-Dimensions and Massively Parallelized (FEM3MP), which used body-fitted coordinates. Using the FAC2 performance metric from Chang and Hanna, which is the fraction of predictions within a factor of 2 of observations, IBM-WRF achieves 100% and 71% for velocity predictions using cup and sonic anemometer observations, respectively. For the passive scalar, 53% of the model predictions meet the FAC5 (factor of 5) criteria.
Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.
This paper describes an immersed boundary method that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Mesoscale models, such as WRF, are increasingly used for high-resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. The use of an alternative-gridding technique, known as an immersed boundary method, alleviates coordinate transformation errors and eliminates restrictions on terrain slope that currently limit mesoscale models to slowly varying terrain. Simulations are presented for canonical cases with shallow terrain slopes, and comparisons between simulations with the native terrain-following coordinates and those using the immersed boundary method show excellent agreement. Validation cases demonstrate the ability of the immersed boundary method to handle both Dirichlet and Neumann boundary conditions. Additionally, realistic surface forcing can be provided at the immersed boundary by atmospheric physics parameterizations, which are modified to include the effects of the immersed terrain. Using the immersed boundary method, the WRF model is capable of simulating highly complex terrain, as demonstrated by a simulation of flow over an urban skyline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.