The layered transition metal dichalcogenides host a rich collection of charge density wave phases in which both the conduction electrons and the atomic structure display translational symmetry breaking. Manipulating these complex states by purely electronic methods has been a long-sought scientific and technological goal. Here, we show how this can be achieved in 1T-TaS 2 in the 2D limit. We first demonstrate that the intrinsic properties of atomically thin flakes are preserved by encapsulation with hexagonal boron nitride in inert atmosphere. We use this facile assembly method together with transmission electron microscopy and transport measurements to probe the nature of the 2D state and show that its conductance is dominated by discommensurations. The discommensuration structure can be precisely tuned in few-layer samples by an in-plane electric current, allowing continuous electrical control over the discommensuration-melting transition in 2D.two-dimensional materials | strongly correlated systems | charge density waves L ayered 1T-TaS 2 exhibits a number of unique structural and electronic phases. At low temperature and ambient pressure, the ground state is a commensurate (C) charge density wave (CDW). On heating, it undergoes a sequence of first-order phase transitions to a nearly commensurate (NC) CDW at 225 K, to an incommensurate (IC) CDW at 355 K, and finally to a metallic phase at 545 K. Each transition involves both conduction electron and lattice degrees of freedom-large changes in electronic transport properties occur, concomitant with structural changes to the crystal. By either chemical doping or applying high pressures, it is possible to suppress the CDWs and induce superconductivity (1-3). For device applications, it is desirable to control these phases by electrical means, but this capability is difficult to achieve in bulk crystals due to the high conduction electron density. Recent efforts to produce thin samples by mechanical exfoliation provide a new avenue for manipulating the CDWs in 1T-TaS 2 (4-8). These studies have demonstrated the suppression of CDW phase transitions using polar electrolytes, as well as resistive switching between the different phases. As the material approaches the 2D limit, however, significant changes have been observed in the transport properties (4,5,8). However, the microscopic nature of the 2D state remains unclear. In this work, we use transmission electron microscopy (TEM) together with transport measurements to develop a systematic understanding of the CDW phases and phase transitions in ultrathin 1T-TaS 2 . We find that charge ordering disappears in flakes with few atomic layers due to surface oxidation. When samples are instead environmentally protected, the CDWs persist and their transitions can be carefully tuned by electric currents.Both the atomic and CDW structure of 1T-TaS 2 can be visualized in reciprocal space by TEM electron diffraction (9, 10). In Fig. 1A, we show diffraction images taken from a bulk-like, 50-nm-thick crystal at low and room tem...
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growth trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.
By combining a surfactant, an organic pore expander, a silane, and poly(ethylene glycol) (PEG), we have observed the formation of a previously unknown set of ultrasmall silica structures in aqueous solutions. At appropriate concentrations of reagents, ∼2 nm primary silica clusters arrange around surfactant micelles to form ultrasmall silica rings, which can further evolve into cage-like structures. With increasing concentration, these rings line up into segmented worm-like one-dimensional (1D) structures, an effect that can be dramatically enhanced by PEG addition. PEG adsorbed 1D striped cylinders further arrange into higher order assemblies in the form of two-dimensional (2D) sheets or three-dimensional (3D) helical structures. Results provide insights into synergies between deformable noncovalent organic molecule assemblies and covalent inorganic network formation as well as early transformation pathways from spherical soft materials into 1D, 2D, and 3D silica solution structures, hallmarks of mesoporous silica materials formation. The ultrasmall silica ring and cage structures may prove useful in nanomedicine and other nanotechnology based applications.
Stimuli-responsive materials have attracted great interest in catalysis, sensing, and drug delivery applications and are typically constituted by soft components. We present a one-pot synthetic method for a type of inorganic silica-based shape change material that is responsive to water vapor exposure. After the wetting treatment, the cross-sectional shape of aminated mesoporous silica nanoparticles (MSNs) with hexagonal pore lattice changed from hexagonal to six-angle-star, accompanied by the loss of periodic mesostructural order. Nitrogen sorption measurements suggested that the wetting treatment induced a shrinkage of mesopores resulting in a broad size distribution and decreased mesopore volume. Solid-state (29)Si nuclear magnetic resonance (NMR) spectroscopy of samples after wetting treatment displayed a higher degree of silica condensation, indicating that the shape change was associated with the formation of more siloxane bonds within the silica matrix. On the basis of material characterization results, a mechanism for the observed anisotropic shrinkage is suggested based on a buckling deformation induced by capillary forces in the presence of a threshold amount of water vapor available beyond a humidity of about 50%. The work presented here may open a path toward novel stimuli-responsive materials based on inorganic components.
Based on work by Dubochet and others in the 1980s and 1990s, samples for single-particle cryo-electron microscopy (cryo-EM) have been vitrified using ethane, propane or ethane/propane mixtures. These liquid cryogens have a large difference between their melting and boiling temperatures and so can absorb substantial heat without formation of an insulating vapor layer adjacent to a cooling sample. However, ethane and propane are flammable, they must be liquified in liquid nitrogen immediately before cryo-EM sample preparation, and cryocooled samples must be transferred to liquid nitrogen for storage, complicating workflows and increasing the chance of sample damage during handling. Experiments over the last 15 years have shown that cooling rates required to vitrify pure water are only ∼250 000 K s−1, at the low end of earlier estimates, and that the dominant factor that has limited cooling rates of small samples in liquid nitrogen is sample precooling in cold gas present above the liquid cryogen surface, not the Leidenfrost effect. Using an automated cryocooling instrument developed for cryocrystallography that combines high plunge speeds with efficient removal of cold gas, we show that single-particle cryo-EM samples on commercial grids can be routinely vitrified using only boiling nitrogen and obtain apoferritin datasets and refined structures with 2.65 Å resolution. The use of liquid nitrogen as the primary coolant may allow manual and automated workflows to be simplified and may reduce sample stresses that contribute to beam-induced motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.