The molecular mechanisms underlying oocyte maturation in the annelid polychaetes Arenicola marina and Arenicola defodiens were investigated. In both species, a hitherto unidentified hormone triggers synchronous and rapid transition from prophase to metaphase, a maturation process which can be easily reproduced in vitro . Activation of a roscovitine-and olomoucine-sensitive M-phase-specific histone, H1 kinase, occurs during oocyte maturation. Using affinity chromatography on immobilized p9CKShs1 , we purified CDK1 and cyclin B from oocyte extracts prepared from both phases and both species. In prophase, CDK1 is present both as an inactive, but Thr161-phosphorylated monomer, and as an inactive (Tyr15-phosphorylated) heterodimer with cyclin B. Prophase to metaphase transition is associated with complete tyrosine dephosphorylation of the cyclin B-associated CDK1, with phosphorylation of cyclin B, and with dramatic activation of the kinase activity of the CDK1/cyclin B complex. We propose that Arenicola oocytes may provide an ideal model system to investigate the acquisition of the ability of oocytes to be fertilized that occurs as oocyte shift from prophase to metaphase, an important physiological event, probably regulated by active CDK1/cyclin B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.