Fatty acid-binding proteins are cytosolic fatty acid chaperones, and the adipocyte isoform, aP2, plays an important role in obesity and glucose metabolism. Recently, this protein has been detected in macrophages where it strongly contributes to the development of atherosclerosis. Here, we investigated the role of aP2 in macrophage biology and the molecular mechanisms underlying its actions. We demonstrate that aP2-deficient macrophages display defects in cholesterol accumulation and alterations in pro-inflammatory responsiveness. Deficiency of aP2 alters the lipid composition in macrophages and enhances peroxisome proliferator-activated receptor ␥ activity, leading to elevated CD36 expression and enhanced uptake of modified low density lipoprotein. The increased peroxisome proliferatoractivated receptor ␥ activity in aP2-deficient macrophages is also accompanied by a significant stimulation of the liver X receptor ␣-ATP-binding cassette transporter A1-mediated cholesterol efflux pathway. In parallel, aP2-deficient macrophages display reduced IB kinase and NF-B activity, resulting in suppression of inflammatory function including reduced cyclooxygenase-2 and inducible nitric-oxide synthase expression and impaired production of inflammatory cytokines. Our results demonstrate that aP2 regulates two central molecular pathways to coordinate macrophage cholesterol trafficking and inflammatory activity.
Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhalational anthrax because they initiate germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign particles and migrate to lymph nodes. However, the participation of DCs in phagocytosis and dissemination of spores has not been investigated previously. We found that human DCs readily engulfed fully pathogenic Ames and attenuated B. anthracis spores predominately by coiling phagocytosis. Spores provoked a loss of tissue-retaining chemokine receptors (CCR2, CCR5) with a concurrent increase in lymph node homing receptors (CCR7, CD11c) on the membrane of DCs. After spore infection, immature DCs displayed a mature phenotype (CD83bright, HLA-DRbright, CD80bright, CD86bright, CD40bright) and enhanced costimulatory activity. Surprisingly, spores activated the MAPK cascade (ERK, p38) within 30 min and stimulated expression of several inflammatory response genes by 2 h. MAPK signaling was extinguished by 6 h infection, and there was a dramatic reduction of secreted TNF-α, IL-6, and IL-8 in the absence of DC death. This corresponded temporally with enzymatic cleavage of proximal MAPK signaling proteins (MEK-1, MEK-3, and MAP kinase kinase-4) and may indicate activity of anthrax lethal toxin. Taken together, these results suggest that B. anthracis may exploit DCs to facilitate infection.
Fatty acid-binding proteins (FABPs) act as intracellular receptors for a variety of hydrophobic compounds, enabling their diffusion within the cytoplasmic compartment. Recent studies have demonstrated the ability of FABPs to simultaneously regulate metabolic and inflammatory pathways. We investigated the role of adipocyte FABP and epithelial FABP in the development of experimental autoimmune encephalomyelitis to test the hypothesis that these FABPs impact adaptive immune responses and contribute to the pathogenesis of autoimmune disease. FABP-deficient mice exhibited a lower incidence of disease, reduced clinical symptoms of experimental autoimmune encephalomyelitis and dramatically lower levels of proinflammatory cytokine mRNA expression in CNS tissue as compared with wild-type mice. In vitro Ag recall responses of myelin oligodendrocyte glycoprotein 35–55-immunized FABP−/− mice showed reduced proliferation and impaired IFN-γ production. Dendritic cells deficient for FABPs were found to be poor producers of proinflammatory cytokines and Ag presentation by FABP−/− dendritic cells did not promote proinflammatory T cell responses. This study reveals that metabolic-inflammatory pathway cross-regulation by FABPs contributes to adaptive immune responses and subsequent autoimmune inflammation.
Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses. Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM. Here, we investigated the effects of lethal toxin (LT), one of the binary complex virulence factors produced by B. anthracis, on freshly isolated nonhuman primate AM. Exposure of AM to doses of LT that killed susceptible macrophages had no effect on the viability of AM, despite complete MEK1 cleavage. Intoxicated AM remained fully capable of B. anthracis spore phagocytosis. However, pretreatment of AM with LT resulted in a significant decrease in the clearance of both the Sterne strain and the fully virulent Ames strain of B. anthracis, which may have been a result of impaired AM secretion of proinflammatory cytokines. Our data imply that cytolysis does not correlate with MEK1 cleavage, and this is the first report of LT-mediated impairment of nonhuman primate AM bactericidal activity against B. anthracis.
Phagocytosis of inhaled
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.