The neurotransmitter dopamine (DA) has a long association with normal functions such as motor control, cognition, and reward, as well as a number of syndromes including drug abuse, schizophrenia, and Parkinson's disease. Studies show that serotonin (5-HT) acts through several 5-HT receptors in the brain to modulate DA neurons in all three major dopaminergic pathways. There are at least 14 5-HT receptor subtypes, many of which have been shown to play some role in mediating 5-HT/DA interactions. Several subtypes, including the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT4 receptors, act to facilitate DA release, while the 5-HT2C receptor mediates an inhibitory effect of 5-HT on DA release. Most 5-HT receptor subtypes only modulate DA release when 5-HT and/or DA neurons are stimulated, but the 5-HT2C receptor, characterized by high levels of constitutive activity, inhibits tonic as well as evoked DA release. This review summarizes the anatomical evidence for the presence of each 5-HT receptor subtype in dopaminergic regions of the brain and the neuropharmacological evidence demonstrating regulation of each DA pathway. The relevance of 5-HT receptor modulation of DA systems to the development of therapeutics used to treat schizophrenia, depression, and drug abuse is discussed. Lastly, areas are highlighted in which future research would be maximally beneficial to the treatment of these disorders.
Previous work has demonstrated that dopamine (DA) transmission is regulated by serotonin-2C (5-HT2C) receptors but the site(s) in the brain where these receptors are localized is not known. The present work utilized in vivo microdialysis to investigate the modulation of DA release by 5-HT2C receptors localized in the nerve terminal regions of the mesocortical and nigrostriatal DA pathways. Microdialysis probes implanted in the striatum or the prefrontal cortex (PFC) measured dialysate DA concentrations, while the selective 5-HT2B/2C inverse agonist SB 206553 was given locally by reverse dialysis into these terminal regions. Additionally, the effects of the 5-HT2C agonist mCPP on striatal DA were measured. Local administration of SB 206553 (0.1-100 microM) into the striatum increased DA efflux in a concentration-dependent manner. Systemic administration of mCPP (1.0 mg/kg i.p.) decreased striatal DA and attenuated the SB 206553-induced increase. In contrast, infusion of SB 206553 (0.1-500 microM) by reverse dialysis into the PFC had no significant effect on basal DA efflux in this region. Additionally, high concentrations of SB 206553 had no effect on high potassium (K(+))-stimulated DA release in the PFC. These data contribute to a body of evidence indicating that 5-HT2C receptors inhibit nigrostriatal dopaminergic transmission. In addition, the results suggest that the nigrostriatal system is regulated by 5-HT2C receptors localized in the dorsal striatum. Elucidating the mechanisms by which serotonin (5-HT) modulates striatal and prefrontocortical DA concentrations may lead to improvements in the treatment of diverse syndromes such as schizophrenia, Parkinson's disease, anxiety, drug abuse, and/or depression.
Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.