Piglets experience a rapid decrease in body temperature immediately after birth, increasing the risk of mortality. The objective of this study was to determine the effect of drying and/or warming piglets at birth on rectal temperature over the first 24 h after birth. The study was carried out at a commercial sow facility using a completely randomized design with 4 treatments (applied to piglets at birth): Control (no drying or warming), Desiccant (dried using a desiccant), Warming Box (placed in a box under a heat lamp for 30 min), and Desiccant+Warming Box (both dried and warmed as above). Farrowing pens had one heat lamp, temperatures under which were similar to the warming box (35°C). A total of 68 litters (866 piglets) were randomly allotted to a treatment at the birth of the first piglet. At birth, each piglet was identified with a numbered ear tag and weighed; rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1440 min after birth. Data were analyzed using a repeated measures model using PROC MIXED of SAS. Litter was the experimental unit, piglet was a subsample of the litter; the model included the fixed effects of treatment, time (the repeated measure), and the interaction. Rectal temperatures at birth and 1440 min after birth were similar (P > 0.05) for all treatments. At all times between 10 and 120 min after birth, Control piglets had lower (P ≤ 0.05) temperatures than the other 3 treatments. The Desiccant and Warming Box treatments had similar (P > 0.05) temperatures at most measurement times, but the Desiccant+Warming Box treatment had the highest (P ≤ 0.05) rectal temperatures at most times between 10 and 60 min. In addition, for all treatments, Light (< 1.0 kg) birth weight piglets had lower (P ≤ 0.05) temperatures than Medium (1.0 to 1.5 kg) or Heavy (> 1.5 kg) piglets at all times between 10 and 120 min. In addition, at these measurement times, the deviation in temperature between the Control and the other 3 treatments was greater for Light than Medium or Heavy piglets. In conclusion, both drying and warming piglets at birth significantly increased rectal temperatures between 10 and 120 min after birth, with the combination of the 2 interventions having the greatest effect, especially for low birth weight piglets.
The objective of this study was to evaluate the effects of piglet birth weight and drying piglets at birth on post-natal rectal temperatures using a CRD with 2 treatments: 1) Drying (not dried vs. dried at birth with a desiccant); 2) Birth weight [4 within-litter birth weight quartiles (Q1: 1.13 ± 0.33 kg, Q2: 1.43 ± 0.28 kg, Q3: 1.62 ± 0.28 kg, Q4: 1.81 ± 0.28 kg)]. Sows (26) and litters (281 piglets) were randomly allotted to drying treatment and were housed in farrowing crates with a heat lamp; room temperature was set at 22.8°C. Piglets were weighed at birth and rectal temperature measured at 0, 15, 30, 45, 60, 90, 120, 180, 240, and 1440 min after birth. Data were analyzed using PROC MIXED of SAS (SAS Inst. Inc., Cary, NC); the model included fixed effects of litter birth weight quartile and drying treatment and interaction, and time (repeated measure), and random effect of sow. Mean piglet birth weight and rectal temperature at birth were 1.49 ± 0.39 kg and 39.2 ± 0.43°C, respectively. There were no drying by birth weight treatment interactions. Temperatures were similar (P > 0.05) for the drying and birth weight treatments at birth and 240 and 1440 min (Table 1). Drying increased (P < 0.05) rectal temperature from 15 to 180 min; the greatest difference was at 45 min (2.4°C). Temperatures were similar (P > 0.05) for Q2, 3, and 4 from 15 to 180 min. Quartile 1 had a lower (P < 0.05) temperature than the 3 heavier quartiles from 15 to 180 min, except at 120 min when temperatures were similar for Q1 and 2. The lightest piglets exhibited the greatest post-natal temperature decline and drying of piglets at birth reduced the post-natal temperature decline in piglets of all weights.
Cross-fostering is commonly used in commercial swine production to equalize litter sizes and/or adjust piglet birth weights within litters. However, there is limited published information on optimum cross-fostering procedures. This study evaluated effects of within-litter birth weight variation after cross-fostering (using litters of 14 piglets) on piglet pre-weaning mortality (PWM) and weaning weight (WW). A RCBD was used (blocking factors were day of farrowing and sow parity, body condition score, and functional teat number) with an incomplete factorial arrangement of the following two treatments: 1) Birth Weight Category (BWC): Light (< 1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (1.5 to 2.0 kg); 2) Litter Composition: Uniform, all piglets in the litter of the same BWC [UNIFORM LIGHT (14 Light piglets); UNIFORM MEDIUM (14 Medium piglets); UNIFORM HEAVY (14 Heavy piglets)]; Mixed, piglets in the litter of two or more BWC [L+M (7 Light and 7 Medium piglets); M+H (7 Medium and 7 Heavy piglets); L+M+H (3 Light, 6 Medium, and 5 Heavy piglets)]. Piglets were weighed at 24 h after birth and randomly allotted to Litter Composition treatment from within BWC; all piglets were cross-fostered. There were 47 blocks of 6 litters (total 282 litters and 3,948 piglets). Weaning weights were collected at 18.7 ± 0.64 d of age; all PWM was recorded. Individual piglet WW and PWM data were analyzed using PROC MIXED and PROC GLIMMIX of SAS, respectively; models included fixed effects of BWC, Litter Composition, and the interaction, and random effects of sow within block. There were Litter Composition by BWC interactions (P ≤ 0.05) for WW and PWM. Within each BWC, WW generally increased and PWM generally decreased as littermate weight decreased. For example, WW were greatest (P ≤ 0.05) for Light piglets in UNIFORM LIGHT litters, for Medium piglets in L+M litters, and for Heavy piglets in L+M+H litters. Pre-weaning mortality was lowest (P ≤ 0.05) for Medium piglets in L+M litters, and for Heavy piglets in L+M+H litters; however, Litter Composition had no effect (P > 0.05) on PWM of Light piglets. In conclusion, increasing the average birth weight of littermates after cross-fostering generally decreased WW and increased PWM for piglets of all birth weight categories. This implies that the optimum approach to cross-fostering that maximizes piglet pre-weaning growth and survival is likely to vary depending on the birth weight distribution of the population.
Piglets are born wet, and evaporation of that moisture decreases body temperature, increasing the risk of mortality. The objective of this study was to compare the effect of 2 commercially-applicable methods for drying piglets at birth on piglet rectal temperature over 24 h after birth. The study was carried out in standard commercial farrowing facilities with 52 litters, using a completely randomized design with 3 Drying Treatments: Control (not dried); Desiccant (dried at birth using a cellulose-based desiccant); Paper Towel (dried at birth using paper towels). Litters were randomly allotted to treatments at the birth of the first piglet. At birth, piglets were individually identified, and the treatment was applied. Rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1440 min (24 h) after birth. Data were analyzed using a repeated measures model with PROC MIXED of SAS, with litter as the experimental unit and piglet a subsample of the litter. The model included the fixed effects of treatment and time (as a repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on temperature at birth, or 10 or 1440 min after birth. Piglet temperatures between 20 and 120 min after birth were similar (P > 0.05) for the Desiccant and Paper Towel treatments, but were greater (P ≤ 0.05) than the Control. The effect of birth weight on the response to Drying Treatment was evaluated by dividing the data into Light (< 1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (> 1.5 kg) piglet Birth Weight Categories. Piglet rectal temperature data at each measurement time were analyzed using a model that included the fixed effects of Birth Weight Category, Drying Treatment, and the interaction. Temperatures of Light piglets were lower (P ≤ 0.05) than those of Heavy piglets between 20 and 120 min after birth, with Medium piglets being intermediate and generally different to the other 2 weight categories at these times. The difference in temperature between Light as compared to Medium or Heavy piglets was greater for the Control than the other 2 Drying Treatments at 60 min after birth. These results suggest that drying piglets at birth is an effective method to reduce rectal temperature decline in the early post-natal period, especially for low birth weight piglets.
Cross-fostering is a practice commonly used in the swine industry to equalize litter sizes, however, there is limited understanding of the optimum cross-fostering methods that will maximize piglet pre-weaning growth and survival. This study evaluated the effects of within-litter variation in birth weight after cross-fostering on piglet pre-weaning mortality (PWM) and weaning weight (WW) using litters of 15 piglets. A hierarchical incomplete block design was used (blocking factors: day of farrowing and sow parity, body condition score, and number of functional teats) with a 3 by 2 factorial arrangement of treatments: 1) Birth Weight Category (BWC): Light (< 1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (1.5 to 2.0 kg); 2) Litter Composition: UNIFORM (all 15 piglets in each litter of the same BWC), or MIXED (5 piglets in each litter from each BWC; i.e., 5 Light, 5 Medium, and 5 Heavy piglets). At 24 h after birth, piglets were weighed and randomly allotted to Litter Composition treatments from within BWC. The experimental unit was five piglets of the same BWC; there were three experimental units within each Litter Composition treatment litter. There were 17 blocks, each of six litters (one UNIFORM litter of each BWC; three MIXED litters) and 51 replicates (three replicates per block of six litters) for a total of 102 cross-fostered litters and 1,530 piglets. Piglets were weaned at 19.7 ± 0.46 d of age; WW and PWM were measured. PROC GLIMMIX and MIXED of SAS were used to analyze PWM and WW, respectively. Models included BWC, Litter Composition, the interaction, and replicate within block. There were BWC by Litter Composition treatment interactions (P ≤ 0.05) for PWM and WW. Pre-weaning mortality was greater (P ≤ 0.05) for Light piglets in MIXED than UNIFORM litters. In contrast, for Heavy piglets PWM was greater (P ≤ 0.05) and WW was lower (P ≤ 0.05) in UNIFORM than MIXED litters. Medium piglets had similar (P > 0.05) PWM and WW in UNIFORM and MIXED litters. The results of this study, which involved large litter sizes typical of current commercial production, suggested that for piglet survival to weaning, using cross-fostering to form litters of piglets of similar birth weight was beneficial for Light piglets, detrimental for Heavy piglets, and neutral for Medium piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.