Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings.Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers.Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of >30 L/min; 2) use Pa O 2 :FI O 2 < 300 mm Hg or oxygen saturation as measured by pulse oximetry Sp O 2 :FI O 2 < 315 (if oxygen saturation as measured by pulse oximetry is <97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resourcelimited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices.Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.
Background: Whether airspace biomarkers add value to plasma biomarkers in studying ARDS is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs' impact in patients with ARDS.
Methods:We carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate to severe ARDS. Non-bronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes.Results: Compared to placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), interleukin-6 (IL-6), and soluble tumor necrosis factor receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI -12.3 to -1.0, p = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6 point increase in day 3 radiographic assessment of lung edema score (95% CI 2.4 to 10.8, p = 0.004).
Conclusions:MSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.