The Maximum Diversity (MD) problem is the process of selecting a subset of elements where the diversity among selected elements is maximized. Several diversity measures were already studied in the literature, optimizing the problem considered in a pure mono-objective approach. This work presents for the first time multi-objective approaches for the MD problem, considering the simultaneous optimization of the following five diversity measures: (i) Max-Sum, (ii) Max-Min, (iii) Max-MinSum, (iv) Min-Diff and (v) Min-P-center. Two different optimization models are proposed: (i) Multi-Objective Maximum Diversity (MMD) model, where the number of elements to be selected is defined a-priori, and (ii) Multi-Objective Maximum Average Diversity (MMAD) model, where the number of elements to be selected is also a decision variable. To solve the formulated problems, a Multi-Objective Evolutionary Algorithm (MOEA) is presented. Experimental results demonstrate that the proposed MOEA found good quality solutions, i.e. between 98.85% and 100% of the optimal Pareto front when considering the hypervolume for comparison purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.