Abstract. Interest in nutrient loading of seeds is fuelled by its central importance to plant reproductive success and human nutrition. Rates of nutrient loading, imported through the phloem, are regulated by transport and transfer processes located in sources (leaves, stems, reproductive structures), phloem pathway and seed sinks. During the early phases of seed development, most control is likely to be imposed by a low conductive pathway of differentiating phloem cells serving developing seeds. Following the onset of storage product accumulation by seeds, and, depending on nutrient species, dominance of path control gives way to regulation by processes located in sources (nitrogen, sulfur, minor minerals), phloem path (transition elements) or seed sinks (sugars and major mineral elements, such as potassium). Nutrients and accompanying water are imported into maternal seed tissues and unloaded from the conducting sieve elements into an extensive post-phloem symplasmic domain. Nutrients are released from this symplasmic domain into the seed apoplasm by poorly understood membrane transport mechanisms. As seed development progresses, increasing volumes of imported phloem water are recycled back to the parent plant by process(es) yet to be discovered. However, aquaporins concentrated in vascular and surrounding parenchyma cells of legume seed coats could provide a gated pathway of water movement in these tissues. Filial cells, abutting the maternal tissues, take up nutrients from the seed apoplasm by membrane proteins that include sucrose and amino acid/H + symporters functioning in parallel with non-selective cation channels. Filial demand for nutrients, that comprise the major osmotic species, is integrated with their release and phloem import by a turgorhomeostat mechanism located in maternal seed tissues. It is speculated that turgors of maternal unloading cells are sensed by the cytoskeleton and transduced by calcium signalling cascades.
SummaryA suite of newly discovered sucrose transporter genes, PsSUF1, PsSUF4, PvSUT1 and PvSUF1, were isolated from the coats of developing pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) seeds. Sequence analysis indicated that deduced proteins encoded by PsSUF1, PvSUT1 and PvSUF1 clustered in a separate sub-group under sucrose transporter Clade I, whereas the deduced protein encoded by PsSUF4 clustered in Clade II. When expressed in yeast, these genes were shown to encode sucrose transporters with apparent Michaelis Menten constant (K m ) values ranging from 8.9 to 99.8 mM. PvSUT1 exhibited functional characteristics of a sucrose/H þ symporter. In contrast, PsSUF1, PvSUF1 and PsSUF4 supported the pH-and energy independent transport of sucrose that was shown to be bi-directional. These transport properties, together with that of counter transport, indicated that PsSUF1, PvSUF1 and PsSUF4 function as carriers that support the facilitated diffusion of sucrose. Carrier function was unaffected by diethylpyrocarbonate and by maltose competition, suggesting that the sucrose binding sites of these transporters differed from those of known sucrose/H þ symporters. All sucrose transporters were expressed throughout the plant and, of greatest interest, were coexpressed in cells considered responsible for sucrose efflux from seed coats. The possible roles played by the novel facilitators in sucrose efflux from seed coats are discussed.
SummaryThe ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low‐expressing single copy Lr34res genotype that conferred partial resistance. Pathogen‐induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24–72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4‐reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24‐h post‐inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3‐deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.