Studies of metabolic adaptation during environmental stress have broad applications to human disease. Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. Serendipitously, a wide search for adenosine receptor A2b (Adora2b)-elicited cardio-adaptive responses identified the circadian rhythm protein period2 (Per2). Subsequent pharmacologic and genetic studies confirmed Adora2b-dependent stabilization of Per2 during myocardial ischemia. Functional studies of myocardial ischemia in Per2−/− mice revealed larger infarct sizes and abolished cardio-protection by ischemic preconditioning. Metabolic studies during myocardial ischemia uncovered a limited ability of Per2−/− mice to utilize carbohydrates via oxygen-efficient glycolysis. These metabolic alterations were associated with a failure in Per2−/− mice to stabilize hypoxia-inducible-factor Hif1a. Moreover, cardiac stabilization of Per2 via light-exposure transcriptionally enhanced glycolysis, and provided period-specific cardio-protection from ischemia. Together, these studies identify Per2 as key regulator of ischemia tolerance through reprogramming of cardiac metabolism and implicate Per2 as novel therapeutic modality during acute myocardial ischemia.
Sepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia, or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (AR) as potential therapeutic target in endotoxin-induced acute lung injury. We gained initial insight from in vitro studies of cultured endothelia or epithelia exposed to inflammatory mediators showing time-dependent induction of the A2BAR (up to 12.9 ± 3.4-fold, p < 0.05). Similarly, murine studies of endotoxin-induced lung injury identified an almost 4.6-fold induction of A2BAR transcript and corresponding protein induction with LPS exposure. Studies utilizing A2BAR promoter constructs and RNA protection assays indicated that A2BAR induction involved mRNA stability. Functional studies of LPS-induced lung injury revealed that pharmacological inhibition or genetic deletion of the A2BAR was associated with dramatic increases in lung inflammation and histologic tissue injury. Studies of A2BAR bone marrow chimeric mice suggested pulmonary A2BAR signaling in lung protection. Finally, studies with a specific A2BAR agonist (BAY 60-6583) demonstrated attenuation of lung inflammation and pulmonary edema in wild-type but not in gene-targeted mice for the A2BAR. These studies suggest the A2BAR as potential therapeutic target in the treatment of endotoxin-induced forms of acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.