Previous studies suggest uniform reductions in coral calcification under ocean acidification (OA); however, greater tolerance has been observed under natural diel metabolic signals present on reefs. In addition, few studies have examined the role of in hospite zooxanthellae energetics on coral OA tolerance. In this study, we examined zooxanthellae photosynthesis and coral calcification responses using seawater with natural metabolic dissolved inorganic carbon (DIC) dynamics from a fringing back reef on Little Cayman Island, Caribbean. The experimental design included Acropora cervicornis and Porites divaricata microcolonies grown in continuously flowing seawater with (∼1000 μatm) and without (∼500 μatm) CO2 enrichment to year 2100 predicted levels. Calcification rates were measured weekly, while linear extension and zooxanthellae photosynthesis were determined at the termination of the 28 d experiment. Results showed A. cervicornis microcolonies maintained both photosynthesis and calcification under elevated CO2 partial pressure (pCO2) relative to controls. However, photosynthesis and calcification rates of P. divaricata microcolonies were reduced by ∼80 and 20%, respectively, under relatively high [DIC]:[H+] ratios and aragonite saturation states (Ωarag). Porites divaricata calcification response to elevated pCO2 was linked to photophysiological dysfunction of the algal symbiont, an indicator that this species was metabolically depressed under elevated pCO2. In contrast to calcification, linear extension rates were unaffected by pCO2 in both species. Future studies should investigate how elevated pCO2 may compromise zooxanthellae–coral interactions with an emphasis on DIC uptake pathways.
Abstract:Variations in utricle morphology may be responsible for different tolerances to ocean acidification (OA) within the macroalgal genus Halimeda, an important sediment producer on reefs. However, differences in species' utricle morphology and their relationship to calcification and crystal formation have not been well articulated. In the present study, we characterized the utricle morphologies of six Halimeda species. Primary utricle ultrastructure was quantitatively and qualitatively compared to tissue inorganic content and crystal microstructure. Morphologies differed across species and several morphometric relationships were revealed. Primary utricle size (r 2 = 0.70) and diffusion pathway length (r 2 = 0.87) had inverse relationships with inorganic content based on regression analyses, and corresponded to crystal microstructure form. Species with large utricles and long diffusion pathways contained more narrow (~ 0.15 μm) aragonite needles and minimal micro-anhedral crystal formations. In contrast, species with small utricles and short diffusion pathways elucidated aggregates of micro-anhedral crystals and wider aragonite needles (~ 0.30 μm). Species' utricle characteristics generally corresponded to specific evolutionary lineages. Thus, characteristics of Halimeda utricle morphology may control long-term adaptive responses to OA, an idea articulated in the broader literature.
Ocean acidification (OA) effects on photophysiology and calcification were examined in Halimeda discoidea, a calcifying macroalga that produces tropical reef sediments. Photosynthetic parameters, including maximum photosynthetic rate (P max), photosynthetic efficiency (α) and compensating irradiance (I c) were determined in short-term assays on live thalli after a 10 d exposure to 4 levels of CO 2 partial pressures (pCO 2 ; 491, 653, 982 and 1201 µatm) under satura ting (300 µmol photons m −2 s −1) and sub-saturating (90 µmol photons m −2 s −1) irradiance in an aquaria study. Morphology of aragonite crystals produced in segments formed on adult thalli was characterized using scanning electron microscopy (SEM). Further, we examined crystal morphology and changes in inorganic content of non-living segments exposed to elevated (1201 µatm) and ambient pCO 2 for 27 d to assess OA effects on carbonate sediments generated from H. discoidea. Even though P max was higher under elevated pCO 2 , this photophysiological response did not result in higher calcification rates. Based on crystal measurements and SEM imagery, aragonite crystals within new segments were indistinguishable across pCO 2 and irradiance treatments. Under high irradiance, new segments showed a greater investment in organic versus inorganic production. Non-living segments contained narrower crystals after 27 d exposure to elevated pCO 2 relative to controls, but differences were small (0.03 µm) and did not contribute significantly to changes in normalized biomass or inorganic content. Based on these results, H. discoidea will likely produce new calcified segments with intact aragonite crystals under year 2100 pCO 2 levels at high and low irradiance, while aragonite crystals of the sediment may produce thinner needle carbonate muds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.