Assessment of pharmacodynamic activity from standard in vitro minimum inhibitory concentrations (MICs) alone is insufficient to predict in vivo potency. Achievable serum and tissue concentrations as well as pharmacokinetic characteristics must be considered. When pharmacokinetic and pharmacodynamic values are combined, the area under the inhibitory curve (AUIC) and peak concentration: MIC ratio predict clinical cure for fluoroquinolones. Clinical data and animal models indicate that a peak:MIC of 10:1 and above and an AUIC of 125 and above are predictive of a clinical cure for this class of antimicrobials against gram‐negative organisms. The values may be used to compare and contrast fluoroquinolones to determine which would be best for treating a specific microorganism. Pharmacodynamic data also can be used to design regimens that minimize the risk of suboptimal drug levels. Ensuring the optimal fluoroquinolone dosage based on pharmacodynamic principles would diminish the emergence of resistant organisms and prevent treatment failures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.