Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Sustainable production of food products for human consumption is required to reduce negative impacts on the environment and to consumer’s health. Soybeans are an excellent source of nutritive plant proteins; aqueous extraction yields part of the available oil and protein from the legume. Many studies have been conducted which detail the various processing parameters and their effects on the extraction yields, yet there is little data on the localisation of nutritive components such as oil and protein in the fibrous unextracted by-product. Here we show a novel confocal laser scanning microscopy investigation of soybean processing materials and the physical effects of thermal treatment on the materials microstructure upon aqueous extraction. Various features, more specifically oil, protein (including protein aggregation) and cell wall structures, are visualised in the fibrous by-product, soy slurry and soy extract, with their presence both in the continuous phase and within intact cotyledon cells. Thermal treatment reduced the protein extraction yield; this is shown to be a result of aggregated protein bodies in the continuous phase and within intact cotyledons cells. Knowledge of the processing material microstructures can be applied to improve extraction yields and reduce waste production
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.