Highlights d T cells with a unique metabolic profile are expanded in acute COVID-19 d These T cells are prone to mitochondrial apoptosis, correlating with lymphopenia d Metabolically distinct myeloid-derived suppressor cells increase in acute COVID-19 d The presence of these M-MDSCs in acute COVID-19 correlates with disease severity
SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.
The influenza A virus components of the live, attenuated influenza vaccine (LAIV) encode the HA and NA gene segments from a circulating virus strain and the remaining gene segments from the cold-adapted master donor virus, A/Ann Arbor/6/1960 (H2N2). The master donor virus imparts at least three phenotypes: temperature-sensitivity (ts), attenuation (att), and cold-adaption (ca). The genetic loci responsible for the att and ts phenotypes of LAIV were mapped to PB1, PB2, and NP by reverse genetics experiments using immortalized cell lines. However, some in vivo studies have demonstrated that the M segment, which acquired an alanine (Ala) to serine (Ser) mutation at M2 position 86 during cold adaption – a mutation found in no other influenza A virus strain - contributes to the att phenotype. Prior studies have shown this region of the M2 cytoplasmic tail to be critical for influenza virus replication. Using reverse genetics, we demonstrate that certain amino acid substitutions at M2 positions 83 and 86 alter the replication of influenza A/Udorn/307/72 (H3N2). Importantly, substitution of a Ser at M2 position 86 reduces A/Udorn/307/72 replication in differentiated primary human nasal epithelial cell (hNECs) cultures, but does not considerably affect replication in MDCK cells. When a Ser was substituted for Ala at M2 86 in LAIV, the virus replicated to higher titers and with faster kinetics in hNEC cultures, implicating this amino acid change as contributing to LAIV attenuation. Increased replication also resulted in increased production of IFN-λ. These data indicate the LAIV associated Ser mutation at M2 position 86 contributes to the att phenotype and is associated with a differential regulation of interferon in LAIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.