BackgroundRift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses.ResultsScreening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics.ConclusionThis study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV.
The Influenza virus is a leading cause of respiratory disease in the United States each year. While the virus normally causes mild to moderate disease, hospitalization and death can occur in many cases. There are several methodologies that are used for detection; however problems such as decreased sensitivity and high rates of false-negative results may arise. There is a crucial need for an effective sample preparation technology that concentrates viruses at low abundance while excluding resident analytes that may interfere with detection. Nanotrap particles are hydrogel particles that are coupled to chemical dye affinity baits that bind a broad range of proteins and virions. Within minutes (<30 minutes), Nanotrap particles concentrate low abundant proteins and viruses from clinically complex matrices. Nanotrap particles with reactive red baits concentrated numerous respiratory viruses including various strains and subtypes of Influenza virus, Coronavirus, and Respiratory Syncytial Virus from saliva, nasal fluid swab specimens, and nasal aspirates. Detection was enhanced more than 10-fold when coupled to plaque assays and qRT-PCR. Importantly, Nanotrap particle can efficiently capture and concentrate multiple viral pathogens during a coinfection scenario. These results collectively demonstrate that Nanotrap particles are an important tool that can easily be integrated into various detection methodologies.
BackgroundRift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus that has a detrimental effect on both livestock and human populations. While there are several diagnostic methodologies available for RVFV detection, many are not sensitive enough to diagnose early infections. Furthermore, detection may be hindered by high abundant proteins such as albumin. Previous findings have shown that Nanotrap particles can be used to significantly enhance detection of various small analytes of low abundance. We have expanded upon this repertoire to show that this simple and efficient sample preparation technology can drastically improve the detection of the RVFV nucleoprotein (NP), the most abundant and widely used viral protein for RVFV diagnostics.ResultsAfter screening multiple Nanotrap particle architectures, we found that one particle, NT45, was optimal for RVFV NP capture, as demonstrated by western blotting. NT45 significantly enhanced detection of the NP at levels undetectable without the technology. Importantly, we demonstrated that Nanotrap particles are capable of concentrating NP in a number of matrices, including infected cell lysates, viral supernatants, and animal sera. Specifically, NT45 enhanced detection of NP at various viral titers, multiplicity of infections, and time points. Our most dramatic results were observed in spiked serum samples, where high abundance serum proteins hindered detection of NP without Nanotrap particles. Nanotrap particles allowed for sample cleanup and subsequent detection of RVFV NP. Finally, we demonstrated that incubation of our samples with Nanotrap particles protects the NP from degradation over extended periods of time (up to 120 hours) and at elevated temperatures (at 37ºC).ConclusionThis study demonstrates that Nanotrap particles are capable of drastically lowering the limit of detection for RVFV NP by capturing, concentrating, and preserving RVFV NP in clinically relevant matrices. These studies can be extended to a wide range of pathogens and their analytes of diagnostic interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.