BackgroundMany of the mosquito species responsible for malaria transmission belong to a sibling complex; a taxonomic group of morphologically identical, closely related species. Sibling species often differ in several important factors that have the potential to impact malaria control, including their geographical distribution, resistance to insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on key factors such as insecticide resistance to aid more focussed, species-selective vector control.ResultsWithin the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographical distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anopheles melas and Anopheles merus have been generated based on records that were confirmed using molecular identification methods and a model that addresses issues of sampling bias and past changes to the environment. The data available for insecticide resistance has been evaluated and differences between sibling species are apparent although further analysis is required to elucidate trends in resistance.ConclusionsSibling species display important variability in their geographical distributions and the most important malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical occurrence data to be coupled with species-specific data on important factors for vector control including insecticide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide information to greatly improve and inform existing malaria transmission models.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-017-1734-y) contains supplementary material, which is available to authorized users.
BackgroundPublic health strategies that target mosquito vectors, particularly pyrethroid long‐lasting insecticidal nets (LLINs), have been largely responsible for the substantial reduction in the number of people in Africa developing malaria. The spread of insecticide resistance in Anopheles mosquitoes threatens these impacts. One way to control insecticide‐resistant populations is by using insecticide synergists. Piperonyl butoxide (PBO) is a synergist that inhibits specific metabolic enzymes within mosquitoes and has been incorporated into pyrethroid‐LLINs to form pyrethroid‐PBO nets. Pyrethroid‐PBO nets are currently produced by four LLIN manufacturers and, following a recommendation from the World Health Organization (WHO) in 2017, are being included in distribution campaigns in countries. This review examines epidemiological and entomological evidence on whether the addition of PBO to LLINs improves their efficacy.Objectives1. Evaluate whether adding PBO to pyrethroid LLINs increases the epidemiological and entomological effectiveness of the nets.2. Compare the effects of pyrethroid‐PBO nets currently in commercial development or on the market with their non‐PBO equivalent in relation to:a. malaria infection (prevalence or incidence); b. entomological outcomes.Search methodsWe searched the Cochrane Infectious Diseases Group (CIDG) Specialized Register; CENTRAL, MEDLINE, Embase, Web of Science, CAB Abstracts, and two clinical trial registers (ClinicalTrials.gov and WHO International Clinical Trials Registry Platform) up to 24 August 2018. We contacted organizations for unpublished data. We checked the reference lists of trials identified by the above methods.Selection criteriaWe included laboratory trials, experimental hut trials, village trials, and randomized clinical trials with mosquitoes from the Anopheles gambiae complex or Anopheles funestus group.Data collection and analysisTwo review authors assessed each trial for eligibility, extracted data, and determined the risk of bias for included trials. We resolved disagreements through discussion with a third review author. We analysed the data using Review Manager 5 and assessed the certainty of the evidence using the GRADE approach.Main resultsFifteen trials met the inclusion criteria: two laboratory trials, eight experimental hut trials, and five cluster‐randomized controlled village trials.One village trial examined the effect of pyrethroid‐PBO nets on malaria infection prevalence in an area with highly pyrethroid‐resistant mosquitoes. The latest endpoint at 21 months post‐intervention showed that malaria prevalence probably decreased in the intervention arm (OR 0.40, 95% CI 0.20 to 0.80; 1 trial, 1 comparison, moderate‐certainty evidence).In highly pyrethroid‐resistant areas (< 30% mosquito mortality), in comparisons of unwashed pyrethroid‐PBO nets to unwashed standard‐LLINs, PBO nets resulted in higher mosquito mortality (risk ratio (RR) 1.84, 95% CI 1.60 to 2.11; 14,620 mosquitoes, 5 trials, 9 comparisons, high‐certainty evidence) and lower blood feed...
SignificanceMalaria control programs rely on chemical insecticides to target mosquito vectors and are potentially threatened by the emergence of insecticide resistance in African vector populations. Insecticide resistance management initiatives require comprehensive quantification of resistance in field populations to the set of insecticides used in vector control. We analyzed patterns of variation and covariation in resistance to these insecticides, using statistical methods that handle the sparse spatiotemporal distribution of the available data. We found relationships across different insecticide types that are consistent across large parts of Africa, allowing prediction of resistance to be improved by incorporating observations across multiple insecticide types. We also found large-scale relationships between phenotypic resistance and patterns of genetic variation, demonstrating the potential utility of genetic markers.
BackgroundSignificant reductions in malaria transmission have been achieved over the last 15 years with elimination occurring in a small number of countries, however, increasing drug and insecticide resistance threatens these gains. Insecticide resistance has decreased the observed mortality to the most commonly used insecticide class, the pyrethroids, and the number of alternative classes approved for use in public health is limited. Disease prevention and elimination relies on operational control of Anopheles malaria vectors, which requires the deployment of effective insecticides. Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available.MethodsResistance data are obtained from published articles, by contacting authors and custodians of unpublished data sets. Where possible data is disaggregated to single sites and collection periods to give a fine spatial resolution.ResultsCurrently the data set includes data from 1955 to October 2016 from 71 malaria endemic countries and 74 anopheline species. This includes data for all four classes of insecticides and associated resistance mechanisms.ConclusionsResistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. The Malaria Atlas Project-Insecticide Resistance (MAP-IR) venture has been established to develop tools that will use available data to provide best estimates of the spatial distribution of insecticide resistance and help guide control programmes on this serious issue.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-017-1733-z) contains supplementary material, which is available to authorized users.
BackgroundUnderstanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania.MethodsGroups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments.ResultsThe total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent ‘bouncing’ flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. ‘Visiting’ and ‘bouncing’ rates were highest above the volunteer’s chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer’s head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204–290 s on untreated nets and 46–82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an ‘attract and kill’ rather than a repellent mode of action.ConclusionsThe study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-017-1909-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.