Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km 3 ) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000-1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2-3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO 2 =56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas. Editorial responsibility: D Dingwell J.-C. Thouret ( ) ) Laboratoire Magmas et Volcans,Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Pl...
We used a large set of satellite- (visible, infrared, and radar images from Planetscope, MODIS, VIIRS, Sentinel2, Landsat 8, and Sentinel 1) and ground-based data (optical images, SO2 flux, shallow seismicity) to describe and characterize the activity of the Sabancaya volcano during the unrest and eruption phases that occurred between 2012 and 2020. The unrest phase (2012–2016) was characterized by increasing gas and thermal flux, sourced by a convective magma column rising along with the remnants of a buried plug still permeable to fluid flow. Conversely, a new conduit, adjacent to the previous one, fed the eruptive phase (2016–2020) which was instead characterized by a discontinuous extrusive activity, with phases of dome growth (at rates from 0.04 to 0.75 m3 s−1) and collapse. The extrusive activity was accompanied by fluctuating thermal anomalies (0.5–25 MW), by irregular SO2 degassing (700–7000 tons day−1), and by variable explosive activity (4–100 events d−1) producing repeated vulcanian ash plumes (500–5000 m above the crater). Magma budget calculation during the eruptive phase indicates a large excess of degassing, with the volume of degassed magma (0.25–1.28 km3) much higher than the volume of erupted magma (< 0.01 km3). Similarly, the thermal energy radiated by the eruption was much higher than that sourced by the dome itself, an unbalance that, by analogy with the degassing, we define as “excess thermal radiation”. Both of these unbalances are consistent with the presence of shallow magma convection that fed the extrusive and explosive activity of the Sabancaya dome.
Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley. A multidisciplinary geophysical study has been performed to investigate the internal structure and the fluids flow within the edifice. We conducted 10 self-potential (SP) radial (from summit to base) profiles, 15 audio magnetotelluric (AMT) soundings on the west flank and a detailed survey of SP and soil temperature measurements on the summit caldera floor. The typical "V" shape of the SP radial profiles has been interpreted as the result of a hydrothermal zone superimposed on a hydrogeological zone in the upper parts of the edifice, and depicts a sub-circular SP positive anomaly, about 6 km in diameter. The latter is centred on the summit, and is characterised by a larger extension on the western flank located on the low-relief high plateau. The AMT resistivity model shows the presence of a conductive body beneath the summit at a depth comparable to that of the bottom of the inner south crater in the present-day caldera, where intense hydrothermal manifestations occur. The lack of SP and temperature anomalies on the present caldera floor suggests a self-sealed hydro-thermal system, where the inner south crater acts as a pressure release valve. Although no resistivity data exists on the eastern flank, we presume, based on the asymmetry of the basement topography, and the amplitude of SP anomalies on the east flank, which are approximately five fold that on the west flank, that gravitational flow of hydrothermal fluids may occur towards the deep valley of Ubinas. This hypothesis, supported by the presence of hot springs and faults on the eastern foot of the edifice, reinforces the idea that a large part of the southeast flank of the Ubinas volcano may be altered by hydrothermal activity and will tend to be less stable. One of the major findings that stems from this study is that the slope of the basement on which a volcano has grown plays a major role in the geometry of the hydrothermal systems. Another case of asymmetrical composite cone edifice, built on a steep topography, is observed on El Misti volcano (situated 70 km west of Ubinas), which exhibits a similar SP pattern. These types of edifices have a high potential of spreading and sliding along the slope owing to the thicker accumulation of low cohesion and hydrothermally altered volcanic products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.