Microglia-neuron signalling in the spinal cord is a key mediator of mechanical allodynia caused by peripheral nerve injury. We recently reported sex differences in microglia in pain signalling in mice: spinal mechanisms underlying nerve injury-induced allodynia are microglial dependent in male but not female mice. Whether this sex difference in pain hypersensitivity mechanisms is conserved in other species is unknown. Here, we show that in rats, the spinal mechanisms of nerve injury-induced hypersensitivity in males differ from those in females, with microglial P2X4 receptors (P2X4Rs) being a key point of divergence. In rats, nerve injury produced comparable allodynia and reactive microgliosis in both sexes. However, inhibiting microglia in the spinal cord reversed allodynia in male rats but not female rats. In addition, pharmacological blockade of P2X4Rs, by an intrathecally administered antagonist, attenuated pain hypersensitivity in male rats only. Consistent with the behavioural findings, nerve injury increased cell surface expression and function of P2X4Rs in acutely isolated spinal microglia from male rats but not from female rats. Moreover, in microglia cultured from male rats, but not in those from female rats, stimulating P2X4Rs drove intracellular signalling through p38 mitogen-activated protein kinase. Furthermore, chromatin immunoprecipitation-qPCR revealed that the transcription factor IRF5 differentially binds to the P2rx4 promoter region in female rats vs male rats. Finally, mechanical allodynia was produced in otherwise naive rats by intrathecally administering P2X4R-stimulated microglia from male rats but not those from female rats. Together, our findings demonstrate the existence of sexually dimorphic pain signalling in rats, suggesting that this sex difference is evolutionarily conserved, at least across rodent species.
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Spinal and bulbar muscular atrophy (SBMA) in men is an androgen-dependent neuromuscular disease caused by expanded CAG repeats in the androgen receptor (AR). Whether muscle or motor neuron dysfunction or both underlies motor impairment in SBMA is unknown. Muscles of SBMA mice show significant contractile dysfunction, implicating them as a likely source of motor dysfunction, but whether disease also impairs neuromuscular transmission is an open question. Thus, we examined synaptic function in three well-studied SBMA mouse models-the AR97Q, knock-in (KI), and myogenic 141 models-by recording in vitro miniature and evoked end-plate potentials (MEPPs and EPPs, respectively) intracellularly from adult muscle fibers. We found striking defects in neuromuscular transmission suggesting that toxic AR in SBMA impairs both presynaptic and postsynaptic mechanisms. Notably, SBMA causes neuromuscular synapses to become weak and muscles to become hyperexcitable in all three models. Presynaptic defects included deficits in quantal content, reduced size of the readily releasable pool, and impaired short-term facilitation. Postsynaptic defects included prolonged decay times for both MEPPs and EPPs, marked resistance to -conotoxin (a sodium channel blocker), and enhanced membrane excitability. Quantitative PCR revealed robust upregulation of mRNAs encoding neonatal isoforms of the AChR (␥-subunit) and the voltage-gated sodium channel (Na V 1.5) in diseased adult muscles of all three models, consistent with the observed slowing of synaptic potentials and resistance to -conotoxin. These findings suggest that muscles of SBMA patients regress to an immature state that impairs neuromuscular function.
For over two decades, purinergic signaling in microglia has persisted in the spotlight as a major pathomechanism of chronic pain. Of the many purinoreceptors, the P2X4R of the ionotropic family has a well-described causal role underlying chronic neuropathic pain. This review will first briefly examine microglial P2X4R signaling in the spinal cord as it relates to chronic pain through a historical lens, followed by a more in-depth examination of recent work, which has revealed major sex differences. We also discuss the generalizability of sex differences in microglial and P2X4R signaling in other pain conditions, as well as in non-spinal regions. Finally, we speculate on remaining gaps in the literature as well as what can be done to address them with the ultimate goal of using our collective knowledge to treat chronic pain effectively and in both sexes. Significance Statement. Effective treatments are lacking for chronic pain sufferers, and this may be explained by the vast sex differences underlying chronic pain mechanisms. In this Minireview, we focus on the roles of microglia and P2X4R in chronic pain, with specific attention to the circumstances under which these pathomechanisms differ between males and females. By delineating the ways in which pain occurs differently between the sexes, we can start developing successful therapies for all.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.