Identification of a macrocyclic tambjamine natural product, tambjamine MYP1, from a marine bacterium that may enhance bioactivity by restraining bond rotation.
The discovery of secondary metabolites from marine microorganisms is beset by numerous challenges including difficulties cultivating and subsequently eliciting expression of biosynthetic genes from marine microbes in the laboratory. In this paper, we describe a method of culturing three species from the marine bacterial genus Pseudoalteromonas using cotton scaffold supplemented liquid media. This simple cultivation method was designed to mimic the natural behavior of some members of the genus wherein they form epibiotic/symbiotic associations with higher organisms such as sponges and corals or attach to solid structures as a biofilm. Our scaffolded cultivation is highly effective at stimulating an attachment/biofilm phenotype and causes large changes to metabolite profiles for the microbes investigated. Metabolite changes include alteration to the production levels of known molecules such as violacein, thiomarinol A, and the alterochromide and prodiginine families of molecules. Finally and critically, our technique stimulates the production of unknown compounds that will serve as leads for future natural product discovery. These results suggest our cultivation approach could potentially be used as a general strategy for the activation of silent gene clusters in marine microbes to facilitate access to their full natural product biosynthetic capacity.
Reductive dehalogenases (RDases) are corrinoid-dependent enzymes that reductively dehalogenate organohalides in respiratory processes. By comparing isotope effects in biotically-catalyzed reactions to reference experiments with abiotic corrinoid-catalysts, compound-specific isotope analysis (CSIA) has been shown to yield valuable insights into enzyme mechanisms and kinetics, including RDases. Here, we report isotopic fractionation (ε) during biotransformation of chloroform (CF) for carbon (εC = -1.52 ± 0.34‰) and chlorine (εCl = -1.84 ± 0.19‰), corresponding to a ΛC/Cl value of 1.13 ± 0.35. These results are highly suppressed compared to isotope effects observed both during CF biotransformation by another organism with a highly similar RDase (> 95% sequence identity) at the amino acid level, and to those observed during abiotic dehalogenation of CF. Amino acid differences occur at four locations within the two different RDases’ active sites, and this study examines whether these differences potentially affect the observed εC, εCl, and ΛC/Cl. Structural protein models approximating the locations of the residues elucidate possible controls on reaction mechanisms and/or substrate binding efficiency. These four locations are not conserved among other chloroalkane reducing RDases with high amino acid similarity (> 90%), suggesting that these locations may be important in determining isotope fractionation within this homologous group of RDases.
Reductive dehalogenases (RDases) are a family of redox enzymes that are required for anaerobic organohalide respiration, a microbial process that is useful in bioremediation. Structural and mechanistic studies of these enzymes have been greatly impeded due to challenges in RDase heterologous expression, potentially because of their cobamide-dependence. There have been a few successful attempts at RDase production in unconventional heterologous hosts, but a robust method has yet to be developed. Here we outline a novel respiratory RDase expression system using Escherichia coli . The overexpression of E. coli ’s cobamide transport system, btu , and anaerobic expression conditions were found to be essential for production of active RDases from Dehalobacter - an obligate organohalide respiring bacterium. The expression system was validated on six enzymes with amino acid sequence identities as low as 28%. Dehalogenation activity was verified for each RDase by assaying cell-free extracts of small-scale expression cultures on various chlorinated substrates including chloroalkanes, chloroethenes, and hexachlorocyclohexanes. Two RDases, TmrA from Dehalobacter sp. UNSWDHB and HchA from Dehalobacter sp. HCH1, were purified by nickel affinity chromatography. Incorporation of the cobamide and iron-sulfur cluster cofactors was verified; though, the precise cobalamin incorporation could not be determined due to variance between methodologies, and the specific activity of TmrA was consistent with that of the native enzyme. The heterologous expression of respiratory RDases, particularly from obligate organohalide respiring bacteria, has been extremely challenging and unreliable. Here we present a relatively straightforward E. coli expression system that has performed well for a variety of Dehalobacter spp. RDases. IMPORTANCE Understanding microbial reductive dehalogenation is important to refine the global halogen cycle and to improve bioremediation of halogenated contaminants; however, studies of the family of enzymes responsible are limited. Characterization of reductive dehalogenase enzymes has largely eluded researchers due to the lack of a reliable and high-yielding production method. We are presenting an approach to express reductive dehalogenase enzymes from Dehalobacter , a key group of organisms used in bioremediation, in E. coli . This expression system will propel the study of reductive dehalogenases by facilitating their production and isolation, allowing researchers to pursue more in-depth questions about the activity and structure of these enzymes. This platform will also provide a starting point to improve the expression of reductive dehalogenases from many other organisms.
Prodiginines and tambjamines are related families of bioactive alkaloid natural products with pharmaceutical potential. Both compound families result from a convergent biosynthetic pathway ending in the condensation of a conserved bipyrrole core with a variable partner. This reaction is performed by unique condensation enzymes, and has the potential to be manipulated to produce new pyrrolic compounds. We have purified and reconstituted the in vitro activity of the condensation enzymes PigC and TamQ from Pseudoalteromonas sp., which are involved, respectively, in the prodiginine and tambjamine biosynthetic pathways. Kinetic analysis confirmed a Uni Uni Bi Uni ping‐pong reaction sequence with competitive and uncompetitive substrate inhibition for PigC and TamQ respectively. The kinetic parameters of each enzyme provide insight into their differing substrate scope, and suggest that TamQ may have evolved a wide substrate tolerance that can be used for the production of novel prodiginines and tambjamines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.