Machine learning has the potential to improve identification of patients for appropriate diagnostic testing and treatment, including those who have rare diseases for which effective treatments are available, such as acute hepatic porphyria (AHP). We trained a machine learning model on 205 571 complete electronic health records from a single medical center based on 30 known cases to identify 22 patients with classic symptoms of AHP that had neither been diagnosed nor tested for AHP. We offered urine porphobilinogen testing to these patients via their clinicians. Of the 7 who agreed to testing, none were positive for AHP. We explore the reasons for this and provide lessons learned for further work evaluating machine learning to detect AHP and other rare diseases.
Machine learning has the potential to improve identification of patients for appropriate diagnostic testing and treatment, including those who have rare diseases for which effective treatments are available, such as acute hepatic porphyria (AHP). We trained a machine learning model on 205,571 complete electronic health records from a single medical center based on 30 known cases to identify 22 patients with classic symptoms of AHP that had neither been diagnosed nor tested for AHP. We offered urine porphobilinogen testing to these patients via their clinicians. Of the 7 who agreed to testing, none were positive for AHP. We explore the reasons for this and provide lessons learned for further work evaluating machine learning to detect AHP and other rare diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.