Although populations of many bat species appear to be recovering in some European countries, the extrinsic and intrinsic factors driving these increases have not yet been assessed. Disentangling the benefits of conservation management from other factors such as climate change is a crucial step for improving evidence-based conservation strategies. We used the greater horseshoe bat (Rhinolophus ferrumequinum) as a case study for understanding the recovery of bat populations, as its north-western populations have increased substantially over the past two decades following severe population declines. Using summer roost count data from the UK National Bat Monitoring Programme spanning an 18 year period from 1997 to 2014, we investigated the effects of (i) landscape characteristics associated with the implementation of the agri-environment schemes on colony trends and size, and (ii) meteorological variables on annual colony growth rate. We also assessed the relationship between colony size and colony growth to investigate intrinsic factors such as an Allee effect. Our results indicated that colony size was positively related to a range of landscape features (e.g. amount of broadleaf woodland and grassland, and density of linear features) surrounding the roost, while the amount of artificial light at night had a significant negative effect. Spring temperatures and precipitation (the latter with a lag of one year) were associated with annual colony growth. We also identified a negative density-dependence effect within colonies. Though the conservation of essential landscape elements may have contributed to population increases in the long-term, we conclude that recent population recovery has also been driven by climate Communicated by Dirk Sven Schmeller.Electronic supplementary material The online version of this article (doi:10.1007/s10531-017-1320-1) contains supplementary material, which is available to authorized users. change. Finally we recommend that the conservation of photophobic bat species such as R. ferrumequinum should focus on both the improvement of foraging/commuting habitats and the creation of dark areas.
1. Mitigating the detrimental impacts of intensive farming on biodiversity requires the implementation of cost-effective conservation actions. Targeted agri-environment schemes (AESs) to enhance populations of threatened species inhabiting farmland have been proposed for this purpose, yet their effectiveness for nocturnal wildlife remains unknown.2. We assessed whether hedgerow management prescribed by targeted AESs to improve habitat conditions for the greater horseshoe bat (Rhinolophus ferrumequinum) in England may positively influence the species, the entire bat assemblage and the insect prey of bats. We specifically investigated the responses of bats (occurrence, activity and species richness) and insects (biomass, abundance and diversity) to time since last trimming (from 1 up to 10 years). We explored the mechanisms underlying the effects of AES via changes in trimming regime on bats. Moreover, we investigated the effects of landscape context on bats as we expected that highly mobile species would benefit further from landscape-scale management.3. Bat species richness significantly increased with time since last trimming. Three bat taxa of major conservation concern in Western Europe substantially benefited from the targeted prescription, namely R. ferrumequinum, Rhinolophus hipposideros and Plecotus spp. Insect family richness and dipteran abundance were also significantly greater at hedgerows that were untrimmed for at least 3 years. The activity of more common bat species (i.e. pipistrelle bats) was not influenced by time since last trimming. 4. Changes in trimming regime strongly affected hedgerow height which directly and indirectly (by increasing prey abundance) influenced bat occurrence, activity and species richness along hedgerows. 5. The activity of highly mobile bat species was mainly associated with a range of landscape attributes. The amount of semi-natural grassland within 0.5 km of the sampling sites positively influenced R. ferrumequinum while the presence of urban areas negatively affected light-sensitive bat species. | 1611Journal of Applied Ecology FROIDEVAUX Et Al.
Many long‐term wildlife population monitoring programmes rely on citizen scientists for data collection. This can offer several benefits over traditional monitoring practices as it is a cost‐effective, large‐scale approach capable of providing long time series data and raising public environmental awareness. Whilst there is a debate about the quality of citizen science data, a standardised sampling design can allow citizen science data to be of a similar quality to those collected by professionals. However, many programmes use subjective, opportunistic selection of monitoring sites and this introduces several types of bias, which are not well understood. Using bat roost counts as a case study, we took a ‘virtual ecologist’ approach to simulate the effect of opportunistic site selection and uneven observer retention on our ability to accurately detect abundance trends. We simulated populations with different levels of temporal variability and site fidelity. Our simulations reveal that opportunistic site selection and low observer retention can result in biased trends and that these biases are magnified when monitored populations exhibit high levels of inter‐annual variation and low site fidelity. These results show that the synergistic effects of observer behaviour, site selection, and population dynamics lead to biased abundance trends in monitoring programmes. This study highlights the value of engaging and retaining citizen science observers, a standardised sampling design, and the collection of metadata. We conclude that monitoring programmes need to be aware of their focal species' temporal variability and site fidelity to adequately assess the potential bias caused by opportunistic site selection and low observer retention. Synthesis and applications. Accurate data on population changes are key for conservation success. Therefore, it is important that citizen science monitoring programmes assess and potentially quantify the biases present in their data. We demonstrate the applicability of an established simulation framework to assess the effect of biases on our ability to correctly detect abundance trends. Our findings highlight that monitoring programmes need to be aware of their study species’ temporal variability and site fidelity to assess and account for the effects of biased site selection and observer retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.