Pleural epithelial adaptations to mechanical stress are relevant to both normal lung function and parenchymal lung diseases. Assessing regional differences in mechanical stress, however, has been complicated by the nonlinear stress–strain properties of the lung and the large displacements with ventilation. Moreover, there is no reliable method of isolating pleural epithelium for structural studies. To define the topographic variation in pleural structure, we developed a method of en face harvest of murine pleural epithelium. Silver‐stain was used to highlight cell borders and facilitate imaging with light microscopy. Machine learning and watershed segmentation were used to define the cell area and cell perimeter of the isolated pleural epithelial cells. In the deflated lung at residual volume, the pleural epithelial cells were significantly larger in the apex (624 ± 247 μm2) than in basilar regions of the lung (471 ± 119 μm2) (p < 0.001). The distortion of apical epithelial cells was consistent with a vertical gradient of pleural pressures. To assess epithelial changes with inflation, the pleura was studied at total lung capacity. The average epithelial cell area increased 57% and the average perimeter increased 27% between residual volume and total lung capacity. The increase in lung volume was less than half the percent change predicted by uniform or isotropic expansion of the lung. We conclude that the structured analysis of pleural epithelial cells complements studies of pulmonary microstructure and provides useful insights into the regional distribution of mechanical stresses in the lung.
Equation of state (EOS) data provide necessary information for accurate multiphysics modeling, which is necessary for fields such as inertial confinement fusion. Here, we suggest a neural network surrogate model of energy and entropy and use thermodynamic relationships to derive other necessary thermodynamic EOS quantities. We incorporate phase information into the model by training a phase classifier and using phase-specific regression models, which improves the modal prediction accuracy. Our model predicts energy values to 1% relative error and entropy to 3.5% relative error in a log-transformed space. Although sound speed predictions require further improvement, the derived pressure values are accurate within 10% relative error. Our results suggest that neural network models can effectively model EOS for inertial confinement fusion simulation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.