Schizophrenia and bipolar disorder are common, severe, and disabling psychotic disorders, which are difficult to research. We argue that the genetically determined neurodevelopmental disorder Prader-Willi syndrome (PWS), which is associated with a high risk of affective psychotic illness, can provide a window into genetic mechanisms and associated neural pathways. People with PWS can all show non-psychotic psychopathology and problem behaviours, but the prevalence of psychotic illness differs markedly by genetic subtype; people with PWS due to chromosome 15 maternal uniparental disomy have higher prevalence of psychotic illness compared with patients with PWS due to 15q11-13 deletions of paternal origin. On the basis of this observation and the neural differences between genetic subtypes, we hypothesise that the combined effects of the absent expression of specific maternally imprinted genes at 15q11-13, and excess maternally imprinted or paternally expressed genes on chromosome 15, affect the γ-aminobutyric acid-glutamatergic pathways and associated neural networks that underpin mood regulation and sensory processing, resulting in psychotic illness. We propose a model of potential mechanisms of psychosis in PWS, which might be relevant in the general population, and should inform future research.
BackgroundWe report striking and unanticipated improvements in maladaptive behaviours in Prader–Willi syndrome (PWS) during a trial of vagus nerve stimulation (VNS) initially designed to investigate effects on the overeating behaviour. PWS is a genetically determined neurodevelopmental disorder associated with mild–moderate intellectual disability (ID) and social and behavioural difficulties, alongside a characteristic and severe hyperphagia.MethodsThree individuals with PWS underwent surgery to implant the VNS device. VNS was switched on 3 months post‐implantation, with an initial 0.25 mA output current incrementally increased to a maximum of 1.5 mA as tolerated by each individual. Participants were followed up monthly.ResultsVagal nerve stimulation in these individuals with PWS, within the stimulation parameters used here, was safe and acceptable. However, changes in eating behaviour were equivocal. Intriguingly, unanticipated, although consistent, beneficial effects were reported by two participants and their carers in maladaptive behaviour, temperament and social functioning. These improvements and associated effects on food‐seeking behaviour, but not weight, indicate that VNS may have potential as a novel treatment for such behaviours.ConclusionsWe propose that these changes are mediated through afferent and efferent vagal projections and their effects on specific neural networks and functioning of the autonomic nervous system and provide new insights into the mechanisms that underpin what are serious and common problems affecting people with IDs more generally.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.
Prader-Willi syndrome (PWS) is the most common genetic obesity syndrome, with associated learning difficulties, neuroendocrine deficits, and behavioural and psychiatric problems. As the life expectancy of individuals with PWS increases, there is concern that alterations in brain structure associated with the syndrome, as a direct result of absent expression of PWS genes, and its metabolic complications and hormonal deficits, might cause early onset of physiological and brain aging.In this study, a machine learning approach was used to predict brain age based on grey matter (GM) and white matter (WM) maps derived from structural neuroimaging data using T1-weighted magnetic resonance imaging (MRI) scans. Brain-predicted age difference (brain-PAD) scores, calculated as the difference between chronological age and brain-predicted age, are designed to reflect deviations from healthy brain aging, with higher brain-PAD scores indicating premature aging.Two separate adult cohorts underwent brain-predicted age calculation. The main cohort consisted of adults with PWS (n = 20; age mean 23.1 years, range 19.8–27.7; 70.0% male; body mass index (BMI) mean 30.1 kg/m2, 21.5–47.7; n = 19 paternal chromosome 15q11–13 deletion) and age- and sex-matched controls (n = 40; age 22.9 years, 19.6–29.0; 65.0% male; BMI 24.1 kg/m2, 19.2–34.2) adults (BMI PWS vs. control P = .002). Brain-PAD was significantly greater in PWS than controls (effect size mean ± SEM +7.24 ± 2.20 years [95% CI 2.83, 11.63], P = .002). Brain-PAD remained significantly greater in PWS than controls when restricting analysis to a sub-cohort matched for BMI consisting of n = 15 with PWS with BMI range 21.5–33.7 kg/m2, and n = 29 controls with BMI 21.7–34.2 kg/m2 (effect size +5.51 ± 2.56 years [95% CI 3.44, 10.38], P = .037). In the PWS group, brain-PAD scores were not associated with intelligence quotient (IQ), use of hormonal and psychotropic medications, nor severity of repetitive or disruptive behaviours. A 24.5 year old man (BMI 36.9 kg/m2) with PWS from a SNORD116 microdeletion also had increased brain PAD of 12.87 years, compared to 0.84 ± 6.52 years in a second control adult cohort (n = 95; age mean 34.0 years, range 19.9–55.5; 38.9% male; BMI 28.7 kg/m2, 19.1–43.1).This increase in brain-PAD in adults with PWS indicates abnormal brain structure that may reflect premature brain aging or abnormal brain development. The similar finding in a rare patient with a SNORD116 microdeletion implicates a potential causative role for this PWS region gene cluster in the structural brain abnormalities associated primarily with the syndrome and/or its complications. Further longitudinal neuroimaging studies are needed to clarify the natural history of this increase in brain age in PWS, its relationship with obesity, and whether similar findings are seen in those with PWS from maternal uniparental disomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.