Most methods of dietary reconstruction are limited in their applicability to either extant or extinct taxa. We apply and discuss a method in which dietary information can be reconstructed from chips in the tooth enamel of both living and fossil primates. Such chips can be used to indicate the presence of large hard foods in the diet, and also to provide an estimate of the bite force that was used when the chip was created. Furthermore, the equations derived from this method allow an estimate of maximum bite force to be obtained from a simple measurement of tooth size. We use this method to investigate dietary differences in nonhuman great apes (Pongo, Gorilla, Pan). The high frequency of chips on teeth of Pongo indicate that they frequently use high forces to process hard foods such as seeds and nuts. Gorilla can generate even higher bite forces, but their low incidence of tooth chips suggests that they do so when consuming soft but tough foods. Tooth chips provide a lasting dietary signal that is not easily masked or erased, making them particularly useful for the study of rarely eaten items such as some fallback foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.