Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.
Ipsilateral motor deficits are demonstrable immediately after stroke and extend into the subacute and chronic recovery period. Dissociation between grip strength and dexterity support the notion that dexterity and grip strength operate as anatomically and functionally distinct entities. Our findings in patients with subcortical lesions suggest that the model of white matter tract injury needs to be refined to reflect the influence of a subcortical lesion on bi-hemispheral cortical networks, rather than as a simple "severed cable" model of disruption of corticofugal fibres. Our data have implications for both stroke clinical trials and the development of new strategies for therapeutic intervention in stroke recovery.
Visual restoration therapy appears to induce an alteration in brain activity associated with a shift of attention from the nontrained seeing field to the trained borderzone. The effect appears to be mediated by the anterior cingulate and dorsolateral frontal cortex in conjunction with other higher order visual areas in the occipitotemporal and middle temporal regions. Demonstration of a visual field-specific training effect on brain activity provides an important starting point for understanding the potential for visual therapy in hemianopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.