In this work, we establish that maintenance and inspection are a risk factor in helicopter accidents. Between 2005 and 2015, flawed maintenance and inspection were causal factors in 14% to 21% of helicopter accidents in the U.S. civil fleet. For these maintenance-related accidents, we examined the incubation time from when the maintenance error was committed to the time when it resulted in an accident. We found a significant clustering of maintenance accidents within a short number of flight-hours after maintenance was performed. Of these accidents, 31% of these accidents occurred within the first 10 flight-hours. This is reminiscent of infant mortality in reliability engineering, and we characterized it as maintenance error infant mortality. The last quartile of maintenance-related accidents occurred after 60 flight-hours following maintenance and inspection. We then examined the “physics of failures” underlying maintenance-related accidents and analyzed the prevalence of different types of maintenance errors in helicopter accidents. We found, for instance, that the improper or incomplete (re)assembly or installation of a part category accounted for the majority of maintenance errors with 57% of such cases, and within this category, the incorrect torquing of the B-nut and incomplete assembly of critical linkages were the most prevalent maintenance errors. We also found that within the failure to perform a required preventive maintenance and inspection task category, the majority of the maintenance programs were not executed in compliance with federal regulations, nor with the manufacturer maintenance plan. Maintenance-related accidents are particularly hurtful for the rotorcraft community, and they can be eliminated. This is a reachable objective when technical competence meets organizational proficiency and the collective will of all the stakeholders in this community. We conclude with a set of recommendations based on our findings, which borrow from the ideas underlying the defense-in-depth safety principle to address this disquieting problem.
The objective of this work is to advance the understanding of helicopter accidents by examining and quantifying the association between helicopter-specific configurations (number of main rotor blades, number of engines, rotor diameter, and takeoff weight) and the likelihood of accidents. We leverage a dataset of 8,338 turboshaft helicopters in the U.S. civil fleet and 825 accidents from 2005 to 2015. We use the dataset to develop a logistic regression model using the method of purposeful selection, which we exploit for inferential purposes and highlight the novel insights it reveals. For example, one important question for the design and acquisition of helicopters is whether twin-engine turboshaft helicopters exhibit a smaller likelihood of accidents than their single-engine counterparts, all else being equal. The evidence-based result we derive indicates that the answer is contingent on other covariates, and that a tipping point exists in terms of the rotor diameter beyond which the likelihood of accidents of twin-engines is higher (worse) than that of their single-engine counterparts. Another important result derived here is the association between the number of main rotor blades and likelihood of accidents. We found that for single-engine turboshaft helicopters, the four-bladed ones are associated with the lowest likelihood of accidents. We also identified a clear coupling between the number of engines and the rotor diameter in terms of likelihood of accidents. In summary, we establish important relationships between the different helicopter configurations here considered and the likelihood of accident, but these are associations, not causal in nature. The causal pathway, if it exists, may be confounded or mediated by other variables not accounted for here. The results provided here lend themselves to a rich set of interpretive possibilities, and because of their significant safety implications they deserve careful attention from the rotorcraft community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.