This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
PurposeThis review describes the prevalence of germline TP53 mutations, the risk of breast cancer and other cancers in mutation carriers and management implications for women with breast cancer and unaffected women.MethodsLiterature review of English language papers available through PubMed.ResultsWomen who carry germline mutations in the TP53 gene have a very high risk of breast cancer of up to 85% by age 60 years. Most of these breast cancers are early onset with a median age at diagnosis of 34 years. Approximately 5–8% of women presenting with breast cancer under 30 years old have a germline TP53 gene mutation. Breast cancers in women with TP53 mutations are more likely to be hormone receptor positive and/or Her2 positive. Mastectomy is recommended over lumpectomy in TP53 mutation carriers who have breast cancer so that adjuvant breast radiotherapy can be avoided. Risk-reducing surgery should be considered due to the high contralateral breast cancer risk. Mutation carriers are at high risk of various childhood and adult-onset cancers with a very lifetime risk of malignancy, the commonest malignancies being breast cancer and soft tissue sarcoma. In unaffected female mutation carriers, MRI breast screening or risk-reducing surgery is recommended. The optimal surveillance for other cancers is currently unclear and should ideally be performed as part of a clinical trial.ConclusionsIdentifying a TP53 mutation in a gene panel test is a challenging result for the patient and clinician due to the high risk of second primaries and the lack of consensus about surveillance.
DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation1–3. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 104 births and once in every 103 cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.