SignificanceMeeting human needs while sustaining ecosystems and the benefits they provide is a global challenge. Coastal marine systems present a particularly important case, given that >50% of the world’s population lives within 100 km of the coast and fisheries are the primary source of protein for >1 billion people worldwide. Our integrative analysis here yields an understanding of the sustainability of coupled social-ecological systems that is quite distinct from that provided by either the biophysical or the social sciences alone and that illustrates the feasibility and value of operationalizing the social-ecological systems framework for comparative analyses of coupled systems, particularly in data-poor and developing nation settings.
An effective strategy for prey to survive in habitats rich in predators is to avoid being noticed. Thus, prey are under selection pressure to recognize predators and adjust their behavior, which can impact numerous community-wide interactions. Many animals in murky and turbulent aquatic environments rely on waterborne chemical cues. Previous research showed that the mud crab, , recognizes the predatory blue crab,, via a cue in blue crab urine. This cue is strongest if blue crabs recently preyed upon mud crabs. Subsequently, mud crabs suppress their foraging activity, reducing predation by blue crabs. Using NMR spectroscopy- and mass spectrometry-based metabolomics, chemical variation in urine from blue crabs fed different diets was related to prey behavior. We identified the urinary metabolites trigonelline and homarine as components of the cue that mud crabs use to detect blue crabs, with concentrations of each metabolite dependent on the blue crab's diet. At concentrations found naturally in blue crab urine, trigonelline and homarine, alone as well as in a mixture, alerted mud crabs to the presence of blue crabs, leading to decreased foraging by mud crabs. Risk perception by waterborne cues has been widely observed by ecologists, but the molecular nature of these cues has not been previously identified. Metabolomics provides an opportunity to study waterborne cues where other approaches have historically failed, advancing our understanding of the chemical nature of a wide range of ecological interactions.
Influenza-MRSA coinfection is associated with high fatality in critically ill children. These data support early addition of a second anti-MRSA antibiotic to vancomycin in suspected severe cases.
Coral reef social-ecological systems worldwide face major impacts from climate change, and spatial variation in vulnerability is driven by differential exposure to climatic threats, ecological and socio-economic sensitivity to those threats, ecological recovery potential, and socio-economic adaptive capacity. We assess variation in social-ecological vulnerability to climate change-induced coral bleaching, specifically for reef-based fisheries and tourism, of islands throughout the insular Caribbean, thus providing the first region-wide quantitative analysis of island-scale social-ecological vulnerability to coral bleaching. We show that different components of vulnerability have distinct spatial patterns and that variability in overall vulnerability is driven more by socio-economic than ecological components. Importantly, we find that sovereign islands are less vulnerable on average than overseas territories and that the presence of fisheries management regulations is a significant predictor of adaptive capacity and socio-economic sensitivity, with important implications for island-level governance and policies to reduce climate vulnerability.
IMPORTANCE Families and clinicians have limited validated tools available to assist in estimating long-term outcomes early after pediatric cardiac arrest. Blood-based brain-specific biomarkers may be helpful tools to aid in outcome assessment. OBJECTIVETo analyze the association of blood-based brain injury biomarker concentrations with outcomes 1 year after pediatric cardiac arrest. DESIGN, SETTING, AND PARTICIPANTSThe Personalizing Outcomes After Child Cardiac Arrest multicenter prospective cohort study was conducted in pediatric intensive care units at 14 academic referral centers in the US between May 16, 2017, and August 19, 2020, with the primary investigators blinded to 1-year outcomes. The study included 120 children aged 48 hours to 17 years who were resuscitated after cardiac arrest, had pre-cardiac arrest Pediatric Cerebral Performance Category scores of 1 to 3 points, and were admitted to an intensive care unit after cardiac arrest. EXPOSURE Cardiac arrest. MAIN OUTCOMES AND MEASURESThe primary outcome was an unfavorable outcome (death or survival with a Vineland Adaptive Behavior Scales, third edition, score of <70 points) at 1 year after cardiac arrest. Glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal esterase L1 (UCH-L1), neurofilament light (NfL), and tau concentrations were measured in blood samples from days 1 to 3 after cardiac arrest. Multivariate logistic regression and area under the receiver operating characteristic curve (AUROC) analyses were performed to examine the association of each biomarker with outcomes on days 1 to 3. RESULTS Among 120 children with primary outcome data available, the median (IQR) age was 1.0 (0-8.5) year; 71 children (59.2%) were male. A total of 5 children (4.2%) were Asian, 19 (15.8%) were Black, 81 (67.5%) were White, and 15 (12.5%) were of unknown race; among 110 children with data on ethnicity, 11 (10.0%) were Hispanic, and 99 (90.0%) were non-Hispanic. Overall, 70 children (58.3%) had a favorable outcome, and 50 children (41.7%) had an unfavorable outcome, including 43 deaths. On days 1 to 3 after cardiac arrest, concentrations of all 4 measured biomarkers were higher in children with an unfavorable vs a favorable outcome at 1 year. After covariate adjustment, NfL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.