Damage to the ascending forelimb afferents in the dorsal columns (DC) of the cervical spinal cord in monkeys impairs forelimb use, particularly hand dexterity. Although considerable recovery has been reported, interpretation of the results is complicated by the reproducibility of the lesion and behavioral assessment. Here we examine the effects of a unilateral DC lesion at the C4-C6 spinal cord level in 4 adult squirrel monkeys. Behavioral performance is assessed on a reach-to-grasp task over 5–13 weeks after lesion. Retrograde tracers were injected into the skin of the fingertips to determine the distribution of axon terminals in the cuneate nucleus and estimate the effectiveness of lesion at the conclusion of each case. The size and level of DC lesion was reflected in the proportion of spared afferents, which ranged from 1% to 25% across monkeys. The experiments produced two major findings. First, the extent of deafferentation in the dorsal column is directly related to the degree of reaching and grasping impairments, and to the reactivation profile and somatotopic reorganization in contralateral primary somatosensory cortex. Second, considerable behavioral recovery and cortical reorganization occurred even in the monkey with only 1% of axons spared in the dorsal column. Our findings suggest that cutaneous inputs from the hand and forelimb are critical to the integrity of functions such as grasping and reaching. In addition, axon branches from peripheral afferents that terminate on neurons in the dorsal horn of the spinal cord are likely central to the functional recovery.
ObjectiveTANK Binding Kinase 1 (TBK1) has been implicated in the regulation of metabolism through studies with the drug amlexanox, an inhibitor of the IκB kinase (IKK)-related kinases. Amlexanox induced weight loss, reduced fatty liver and insulin resistance in high fat diet (HFD) fed mice and has now progressed into clinical testing for the treatment and prevention of obesity and type 2 diabetes. However, since amlexanox is a dual IKKε/TBK1 inhibitor, the specific metabolic contribution of TBK1 is not clear.MethodsTo distinguish metabolic functions unique to TBK1, we examined the metabolic profile of global Tbk1 mutant mice challenged with an obesogenic diet and investigated potential mechanisms for the improved metabolic phenotype.Results and conclusionWe report that systemic loss of TBK1 kinase function has an overall protective effect on metabolic readouts in mice on an obesogenic diet, which is mediated by loss of an inhibitory interaction between TBK1 and the insulin receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.