SummaryUnderstanding the molecular anatomy and neural connectivity of the brain requires imaging technologies that can map the 3D nanoscale distribution of specific proteins in the context of brain ultrastructure. Light and electron microscopy (EM) enable visualization of either specific labels or anatomical ultrastructure, but combining molecular specificity with anatomical context is challenging. Here, we present pan-Expansion Microscopy of tissue (pan-ExM-t), an all-optical mouse brain imaging method that combines ∼24-fold linear expansion of biological samples with fluorescent pan-staining of protein densities (providing EM-like ultrastructural context), and immunolabeling of protein targets (for molecular imaging). We demonstrate the versatility of this approach by imaging the established synaptic markers Homer1, Bassoon, PSD-95, Synaptophysin, the astrocytic protein GFAP, myelin basic protein (MBP), and anti-GFP antibodies in dissociated neuron cultures and mouse brain tissue sections. pan-ExM-t reveals these markers in the context of ultrastructural features such as pre and postsynaptic densities, 3D nanoarchitecture of neuropil, and the fine structures of cellular organelles. pan-ExM-t is adoptable in any neurobiological laboratory with access to a confocal microscope and has therefore broad applicability in the research community.Highlightspan-ExM-t visualizes proteins in the context of synaptic ultrastructureLipid labeling in pan-ExM-t reveals organellar and cellular membranesAll-optical, easily accessible alternative to correlative light/electron microscopyHigh potential for high throughput connectomics studies
During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.
Understanding cellular organization demands the best possible spatial resolution in all three dimensions (3D). In fluorescence microscopy, this is achieved by 4Pi nanoscopy methods that combine the concepts of using two opposing objectives for optimal diffraction-limited 3D resolution with switching fluorescent molecules between bright and dark states to break the diffraction limit. However, optical aberrations have limited these nanoscopes to thin samples and prevented their application in thick specimens. Here we have developed an improved isoSTED nanoscope, which utilizes an advanced adaptive optics strategy to achieve sub-50 nm isotropic resolution of structures such as neuronal synapses and ring canals previously inaccessible in tissue. The adaptive optics scheme presented in this work is generally applicable to any microscope with a similar beam path geometry involving two opposing objectives to optimize resolution when imaging deep in aberrating specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.