Background: Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy.
Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana were investigated by a combination of gene knockout, antisense RNA, and gene coexpression studies. Open reading frames (ORF) 3 and 4 of the tenellin biosynthetic gene cluster were previously shown to encode a trans-acting enoyl reductase and a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), respectively, which together synthesize the acyltetramic acid pretenellin-A. In this work, we have shown that ORF1 encodes a cytochrome P450 oxidase, which catalyzes an unprecedented oxidative ring expansion of pretenellin-A to form the 2-pyridone core of tenellin and related metabolites, and that this enzyme does not catalyze the formation of a hydroxylated precursor. Similar genes appear to be associated with PKS-NRPS genes in other fungi. ORF2 encodes an unusual cytochrome P450 monooxygenase required for the selective N-hydroxylation of the 2-pyridone which is incapable of N-hydroxylation of acyltetramic acids.
Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9‐membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate‐processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine‐binding proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.