Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the cooccurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.