The hepatitis C virus (HCV) NS3 protein possesses both protease and helicase activities and is essential for virus replication and maturation. Specific inhibition of NS3 enzymatic activity can be achieved by antibody binding. Transduction of hepatocytes with encoding cDNA leading to intracellular expression of antibody fragments is expected to terminate HCV replication in infected cells. The objective of the present study was the generation of human antibody fragments that neutralize the viral NS3 helicase activity for gene therapeutic applications and drug design. A human immunoglobulin phage-display library cloned from bone marrow aspirate of patients infected with HCV was used for affinity selection against HCV NS3 helicase. Antibody fragments with high affinity to HCV helicase were isolated. To evaluate the inhibitory potential of isolated single-chain antibody fragments, a helicase-mediated, DNA-unwinding enzymatic assay was developed in ELISA format. Recombinant protein comprising the full-length HCV NS3 helicase domain was expressed in the baculovirus expression system. Recombinant antibodies that inhibit the HCV helicase at nanomolar concentrations, with efficacies ranging from 20 % to complete abrogation of enzymatic unwinding activity, were identified. These antibody fragments may be useful for novel gene therapeutic strategies that employ intracellular immunization and may provide new insights into the design of small molecule inhibitors of essential HCV proteins.
The hepatitis C virus (HCV) core protein is essential for viral genome encapsidation and plays an important role in steatosis, immune evasion, and hepatocellular carcinoma. It may thus represent a promising therapeutic target to interfere with the HCV life-cycle and related pathogenesis. In this study, we used phage display to generate single-chain variable domain antibody fragments (scFv) to the core protein from bone marrow plasma cells of patients with chronic hepatitis C. An antibody with high-affinity binding (scFv42C) was thus identified, and the binding site was mapped to the PLXG motif (residues 84-87) of the core protein conserved among different genotypes. Whereas scFv42C displayed diffuse cytoplasmic fluorescence when expressed alone in the Huh7 human hepatoma cell line, cotransfection with the core gene shifted its subcellular distribution into that of core protein. The intracellular association of scFv42C with its target core protein was independently demonstrated by the fluorescence resonance energy transfer technique. Interestingly, expression of the single-chain antibody reduced core protein levels intracellularly, particularly in the context of full HCV replication. Moreover, cell proliferation as induced by the core protein could be reversed by scFv4C coexpression. Therefore, scFv42C may represent a novel anti-HCV agent, which acts by sequestering core protein and attenuating core protein-mediated pathogenesis. (HEPATOLOGY 2008;48:702-712.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.