Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.
Soil fungal communities provide important ecosystem services, however, some soil borne representatives damage agricultural productivity. Composition under land-use change scenarios, especially in drylands, is rarely studied. Here, the soil fungal community composition and diversity of natural shrubland was analyzed and compared with agricultural systems irrigated with different water quality, namely rain, fresh water, dam-stored, and untreated wastewater. Superficial soil samples were collected during the dry and rainy seasons. Amplicon-based sequencing of the ITS2 region was performed on total DNA extractions and used the amplicon sequence variants to predict specific fungal trophic modes with FUNGuild. Additionally, we screened for potential pathogens of crops and humans and assessed potential risks. Fungal diversity and richness were highest in shrubland and least in the wastewater-irrigated soil. Soil moisture together with soil pH and exchangeable sodium were the strongest drivers of the fungal community. The abundance of saprophytic fungi remained constant among the land use systems, while symbiotic and pathogenic fungi of plants and animals had the lowest abundance in soil irrigated with untreated wastewater. We found lineage-specific adaptations to each land use system: fungal families associated to shrubland, rainfed and part of the freshwater were adapted to drought, hence sensitive to exchangeable sodium content and most of them to N and P content. Taxa associated to freshwater, dam wastewater and untreated wastewater irrigated systems show the opposite trend. Additionally, we identified potentially harmful human pathogens that might be a health risk for the population.
While monitoring the presence of antibiotic resistance in municipal wastewater bacteria from Mexico City, five Escherichia coli isolates were detected to be resistant to carbapenems, antibiotics of “last resort” used mostly in hospitals. Further analysis revealed that these carbapenem-resistant isolates carried the gene for a metallo-beta-lactamase, NDM-5. The gene was found to be beared by a large, ~145 kb conjugative plasmid, which also carries putative genes encoding resistance to sulfonamides, trimethoprim, tetracycline, ciprofloxacin, chloramphenicol (although no phenotypic chloramphenicol resistance was detected) and quaternary-ammonium compounds. The plasmid also carried gene mobility determinants, such as an integron integrase, and two transposases. In addition to the direct public health threat posed by the presence of such multi-resistant organisms in wastewater released into the environment and used for crop irrigation; it is particularly concerning that carbapenem-resistant E. coli is rather rare in Mexican hospitals (<1%), but was found in small, 100-mL samples of municipal wastewater. This could suggest that, either these organisms are under-reported by clinical microbiology laboratories, underlining the usefulness of wastewater monitoring; or that there is an unknown source of such carbapenem-resistant organisms that are being dumped into the wastewater. The source of these bacteria must be assessed and controlled to prevent the further spread of this multi-resistance plasmid among other environmental and clinical microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.