Ghrelin is a powerful orexigenic peptide predominantly secreted by the stomach. Blood concentration of ghrelin increases before meals and fall postprandial. Its regulation appears to be influenced by the type of macronutrient ingested, the vagus nerve stimulation and by other post-meal stimulated hormonal factors. However, the direct role of nutrients (amino acids or lipids), neuronal (vagal neurotransmitter acetylcholine) and satiety-inducing factor such as CCK are not known. To study this we applied amino acids, lipids, acetylcholine and CCK via vascular perfusion to the isolated stomachs and found that amino acids significantly reduced ghrelin release from the isolated stomach by approximately ~30% vs the control while lipids (10% Intralipid) had no affect. Acetylcholine (1μM) increased ghrelin release from the stomach by ~37% whereas insulin (10nM) decreased it bỹ 30% vs the control. Interestingly, CCK (100nM) potently increased ghrelin release by ~200% vs the control. Therefore it appears that ghrelin secretion from the stomach is under direct influence of amino acids, neurotransmitter acetylcholine and hormones such as insulin and CCK.
Glutathione redox balance ― defined as the ratio GSH/GSSG ― is a critical regulator of cellular redox state, and declines in this ratio are closely associated with oxidative stress and disease. However, little is known about the impact of genetic variation on this trait. Previous mouse studies suggest that tissue GSH/GSSG is regulated by genetic background and is therefore heritable. In this study, we measured glutathione concentrations and GSH/GSSG in liver and kidney of 30 genetically-diverse inbred mouse strains. Genetic background caused an approximately three-fold difference in hepatic and renal GSH/GSSG between the most disparate strains. Haplotype association mapping determined the loci associated with hepatic and renal glutathione phenotypes. We narrowed the number of significant loci by focusing on those located within protein-coding genes, which we now consider to be candidate genes for glutathione homeostasis. No candidate genes were associated with both hepatic and renal GSH/GSSG, suggesting that genetic regulation of GSH/GSSG occurs predominantly in a tissue-specific manner. This is the first quantitative trait loci study to examine the genetic regulation of glutathione concentrations and redox balance in mammals. We identified novel candidate genes that have the potential to redefine our knowledge of redox biochemistry, its regulation, and inform future therapeutic applications.
Central and peripheral injections of Ghrelin potently stimulates food intake via its receptor, GHSR1a expressed in the brain. In this study, we explored the role of GHSR1a in the paraventricular nucleus of the hypothalamus (PVN) by reducing their gene expression using the RNA interference (RNAi). pSUPER plasmids inserted with sh (short hairpin)-GHSR1a were injected into the PVN to reduce its expression. The transfected rats were monitored daily for their food intake and body weight throughout the experimental period lasting eight days. We found that knockdown of GHSR1a did not affect daily food intake but significantly reduced body weight and blood ghrelin levels. This suggests that the central ghrelin system could selectively regulate body weight without affecting energy intake.
Ghrelin is a 28 amino-acid peptide that has been shown to induce positive energy balance when administered both peripherally and centrally. This effect appears to occur by increasing food intake and by reducing fat utilization. Ghrelin injected into the PVN increases food intake dose-dependently. The NPY receptor has been implicated in the orexigenic effect of ghrelin, but until now, the role of melanocortins on the effect of ghrelin in the PVN has not been reported. Sprague-Dawley rats were stimulated to eat by PVN ghrelin. Pre-injection of 10 pmol of MT II into the PVN caused a significant decrease in ghrelin-induced feeding in both 0-1 h and 0-4 h food intake studies. This finding indicates that MC 3/4-R signaling appears to be recruited by ghrelin, in the PVN, in its role to induce feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.