Hyper-radiosensitivity (HRS) is the increased sensitivity to low doses of ionizing radiation observed in most cell lines. We previously demonstrated that HRS is permanently abolished in cells irradiated at a low dose rate (LDR), in a mechanism dependent on transforming growth factor β3 (TGF-β3). In this study, we aimed to elucidate the activation and receptor binding of TGF-β3 in this mechanism. T-47D cells were pretreated with inhibitors of potential receptors and activators of TGF-β3, along with addition of small extracellular vesicles (sEVs) from LDR primed cells, before their radiosensitivity was assessed by the clonogenic assay. The protein content of sEVs from LDR primed cells was analyzed with mass spectrometry. Our results show that sEVs contain TGF-β3 regardless of priming status, but only sEVs from LDR primed cells remove HRS in reporter cells. Inhibition of the matrix metalloproteinase (MMP) family prevents removal of HRS, suggesting an MMP-dependent activation of TGF-β3 in the LDR primed cells. We demonstrate a functional interaction between TGF-β3 and activin receptor like kinase 1 (ALK1) by showing that TGF-β3 removes HRS through ALK1 binding, independent of ALK5 and TGF-βRII. These results are an important contribution to a more comprehensive understanding of the mechanism behind TGF-β3 mediated removal of HRS.
BackgroundDynamic contrast enhanced magnetic resonance imaging (DCE-MRI) may be used to depict tumour vascular structure and for therapy response assessment in various tumour sites. The purpose of the current work is to examine whether ultra-early changes in tumour physiology following cytotoxic treatment with doxorubicin and liver X receptor (LXR) agonist GW3965 are detectable by DCE-MRI.Methods36 female, athymic nude foxn1nu mice with bilaterally implanted breast cancer xenografts (17 with ER-positive HBCx34, 19 with triple-negative HBCx39) were randomised in the following treatment groups; control, GW3965 (40 mg/kg p.o.), doxorubicin (8 mg/kg i.v.) and a combination therapy of GW3965 and doxorubicin. DCE-MRI (3D FLASH on a 7 T preclinical scanner) was performed at baseline and one and six days after onset of treatment. Wash-in (30 s p.i.) and wash-out (300 s p.i.) enhancement were quantified from dynamic uptake curves, before voxel-by-voxel fitting to the pharmacokinetic Tofts model and generation of maps for the resulting parameters Ktrans, νe and νB. Treatment effect was evaluated by univariate repeated measures mixed-effects maximum likelihood regression models applied to median tumour data.ResultsWe found no effects of any treatment 24 h post treatment. After 6 days, doxorubicin given as both mono- and combination therapy gave significant increases of ~ 30% in wash-in enhancement (p < 0.011) and Ktrans (p < 0.017), and 40–50% in νB (p < 0.024) for HBCx34, but not for HBCx39. No effects of GW3965 were observed at any time (p > 0.1).ConclusionsTwenty-four h after onset of treatment was too early to evaluate treatment effects by DCE-MRI. Early enhancement and Ktrans were approximately equally sensitive metrics to capture treatment effects six days pt. Pharmacokinetic modelling however allowed us to attribute the observed effect to changes in tumour perfusion rather than increased retention.
Transforming growth factor-beta 3 (TGF-β3) is a ubiquitously expressed multifunctional cytokine involved in a range of physiological and pathological conditions, including embryogenesis, cell cycle regulation, immunoregulation, and fibrogenesis. The cytotoxic effects of ionizing radiation are employed in cancer radiotherapy, but its actions also influence cellular signaling pathways, including that of TGF-β3. Furthermore, the cell cycle regulating and anti-fibrotic effects of TGF-β3 have identified it as a potential mitigator of radiation- and chemotherapy-induced toxicity in healthy tissue. This review discusses the radiobiology of TGF-β3, its induction in tissue by ionizing radiation, and its potential radioprotective and anti-fibrotic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.