The pulmonary microvasculature plays a critical role in endotoxin-induced acute lung injury. However, the relevant signaling remain unclear. Specifically the role of endothelial Ca2+ in the induction of endotoxin-mediated responses in lung microvessels remains undefined. Toward elucidating this, we used the isolated blood-perfused rat lung preparation. We loaded microvessels with the Ca2+ indicator, Fura 2 AM and then determined Ca2+ responses to infusions of lipopolysaccharide (LPS) into the microvessels. LPS induced a more than two-fold increase in the amplitude of cytosolic Ca2+ oscillations. Inhibiting inositol 1,4,5 trisphosphate receptors on endoplasmic reticulum (ER) Ca2+ stores with Xestospongin C (XeC), blocked the LPS-induced increase in the Ca2+ oscillation amplitude. However, XeC did not affect entry of external Ca2+ via plasma membrane Ca2+ channels in lung microvascular endothelial cells. This suggested that LPS augmented the oscillations via release of Ca2+ from ER stores. In addition, XeC also blocked LPS-mediated activation and nuclear translocation of nuclear factor-kappa B in lung microvessels. Further, inhibiting ER Ca2+ release blunted increases in intercellular adhesion molecule-1 expression and retention of naïve leukocytes in LPS-treated microvessels. Taken together, the data suggest that LPS-mediated Ca2+ release from ER stores underlies nuclear factor-kappa B activation and downstream inflammatory signaling in lung microvessels. Thus, we show for the first time a role for inositol 1,4,5 trisphosphate-mediated ER Ca2+ release in the induction of LPS responses in pulmonary microvascular endothelium. Mechanisms that blunt this signaling may mitigate endotoxin-induced morbidity.
Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca2+. However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses.
Hyporeactivity to vasoconstrictors is one of the clinical manifestations of sepsis in man and experimental animals. The objective of the investigation was to examine whether atorvastatin can prevent hyporeactivity to norepinephrine (NE) in mouse aorta in sepsis, and if so, what are the mechanisms involved. Sepsis in mice was induced by cecal ligation and puncture. The aorta was harvested for tension experiment, nitric oxide (NO) and cyclic guanosine monophosphate measurements, and inducible NO synthase (iNOS) and α(1D)-adrenoceptor mRNA expression studies. In comparison with sham-operated controls, sepsis significantly decreased the contractile response to NE in the mouse aorta. Pretreatment with atorvastatin of septic animals completely restored NE-induced contractions to levels similar to those of sham-operated controls and significantly increased survival time and mean arterial pressure. Atorvastatin also attenuated iNOS-induced overproduction of NO, as well as iNOS mRNA expression. Accordingly, hyporeactivity to NE was not evident in tissues pretreated with selective iNOS inhibitor 1400W in sepsis. Although basal cyclic guanosine monophosphate accumulation in the aorta was reduced in sepsis, pretreatment of the tissues with soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ) partially restored the reactivity to NE. Interestingly, hyporeactivity to NE in sepsis was associated with a decreased α(1D)-adrenoceptor mRNA expression in the mouse aorta. Atorvastatin pretreatment, however, prevented the decrease in α(1D)-adrenoceptor mRNA expression in septic animals. In conclusion, atorvastatin seems to prevent hyporeactivity to vasoconstrictor NE in the aorta from septic mice through attenuation of overproduction of NO as well as improved α(1D)-adrenoceptor mRNA expression. The findings of the present study may explain the beneficial effects of atorvastatin on improved hemodynamic functions in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.