Bacillus anthracis is a spore-forming, Gram-positive bacterium responsible for anthrax, an acute infection that most significantly affects grazing livestock and wild ungulates, but also poses a threat to human health. The geographic extent of B. anthracis is poorly understood, despite multi-decade research on anthrax epizootic and epidemic dynamics; many countries have limited or inadequate surveillance systems, even within known endemic regions. Here, we compile a global occurrence dataset of human, livestock and wildlife anthrax outbreaks. With these records, we use boosted regression trees to produce a map of the global distribution of B. anthracis as a proxy for anthrax risk. We estimate that 1.83 billion people (95% credible interval (CI): 0.59-4.16 billion) live within regions of anthrax risk, but most of that population faces little occupational exposure. More informatively, a global total of 63.8 million poor livestock keepers (95% CI: 17.5-168.6 million) and 1.1 billion livestock (95% CI: 0.4-2.3 billion) live within vulnerable regions. Human and livestock vulnerability are both concentrated in rural rainfed systems throughout arid and temperate land across Eurasia, Africa and North America. We conclude by mapping where anthrax risk could disrupt sensitive conservation efforts for wild ungulates that coincide with anthrax-prone landscapes.
BackgroundBrucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana.MethodsArchived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006).FindingsOnly buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector.ConclusionsLow seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife sources of infection in determining public health risks from zoonotic disease invasions.
A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.
Although human behavior is frequently cited as a factor influencing the emergence of disease at the human–animal interface, few empirical studies have demonstrated this relationship. We compare humans and their domestic animals living in close proximity to populations of the endangered African wild dog (AWD, Lycaon pictus) in both Kenya and Botswana. We identify culturally based differences in domestic‐stock grazing practices among pastoralists that strongly influence frequency of contact between domestic dogs and AWDs, with parallel differences in disease‐related mortality in AWD populations. Using this study and other examples, we illustrate a conceptual model of the interaction between human behavior and emerging infectious diseases at the human–domestic‐animal–wildlife interface. Human cultural behavior has the potential to influence pathogen adaptation, host susceptibility, spatial distribution, and pathogen exposure and contact rates between susceptible hosts, reservoir hosts, and pathogen communities. This affects the pathogen's basic reproductive number (R0), ability to invade, and persistence potential. Human behavior may be the key that unlocks the proverbial Pandora's Box, allowing infectious diseases to emerge.
SummaryBacillus anthracis is a spore-forming, Gram-positive bacterium responsible for anthrax, an acute and commonly lethal infection that most significantly affects grazing livestock, wild ungulates and other herbivorous mammals, but also poses a serious threat to human health1, 2. The geographic extent of B. anthracis endemism is still poorly understood, despite multi-decade research on anthrax epizootic and epidemic dynamics around the world3, 4. Several biogeographic studies have focused on modeling environmental suitability for anthrax at local or national scales5–9, but many countries have limited or inadequate surveillance systems, even within known endemic regions. Here we compile an extensive global occurrence dataset for B. anthracis, drawing on confirmed human, livestock, and wildlife anthrax outbreaks. With these records, we use boosted regression trees10, 11 to produce the first map of the global distribution of B. anthracis as a proxy for anthrax risk. Variable contributions to the model support pre-existing hypotheses that environmental suitability for B. anthracis depends most strongly on soil characteristics such as pH that affect spore persistence, and the extent of seasonal fluctuations in vegetation, which plays a key role in transmission for herbivores12, 13. We apply the global model to estimate that 1.83 billion people (95% credible interval: 0.59—4.16 billion) live within regions of anthrax risk, but most of that population faces little occupational exposure to anthrax. More informatively, a global total of 63.8 million rural poor livestock keepers (95% CI: 17.5—168.6 million) and 1.1 billion livestock (95% CI: 0.4—2.3 billion) live within vulnerable regions. Human risk is concentrated in rural areas, and human and livestock vulnerability are both concentrated in rainfed systems throughout arid and temperate land across Eurasia, Africa, and North America. We conclude by mapping where anthrax risk overlaps with vulnerable wild ungulate populations, and therefore could disrupt sensitive conservation efforts for species like bison, pronghorn, and saiga that coincide with anthrax-prone, mixed-agricultural landscapes. Anthrax is a zoonotic disease caused by the Gram-positive bacterium Bacillus anthracis, a generalist soil-transmitted pathogen found on every inhabited continent14, and several islands including Haiti and parts of the Philippines and Indonesia. Worldwide, an estimated 20,000 to 100,000 cases of anthrax occur annually, mostly in poor rural areas15. In clinical presentations of anthrax, case fatality rates are a function of exposure pathway. Respiratory exposure from spore inhalation is important the context of bioterrorism, but is highly uncommon, and accounts for a negligible fraction of the global burden of anthrax cases. Cutaneous exposure to B. anthracis accounts for the majority of human cases worldwide, and typically presents with low mortality; gastrointestinal exposure accounts for the remainder and presents with intermediate to high fatality rates. Cutaneous and gastrointestinal cases of anthrax are most commonly caused by handling and slaughtering infected livestock, or butchering and eating contaminated meat; untreated gastrointestinal cases likely account for most human mortality from anthrax.14–16
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.