Very little is known about how animals discriminate pathogens from innocuous microbes. To address this question, we examined infection-response gene induction in the nematode Caenorhabditis elegans. We focused on genes that are induced in C. elegans by infection with the bacterial pathogen Pseudomonas aeruginosa, but are not induced by an isogenic attenuated gacA mutant. Most of these genes are induced independently of known immunity pathways. We generated a GFP reporter for one of these genes, infection response gene 1 (irg-1), which is induced strongly by wildtype P. aeruginosa strain PA14, but not by other C. elegans pathogens or by other wild-type P. aeruginosa strains that are weakly pathogenic to C. elegans. To identify components of the pathway that induces irg-1 in response to infection, we performed an RNA interference screen of C. elegans transcription factors. This screen identified zip-2, a bZIP transcription factor that is required for inducing irg-1, as well as several other genes, and is important for defense against infection by P. aeruginosa. These data indicate that zip-2 is part of a specialized pathogen response pathway that is induced by virulent strains of P. aeruginosa and provides defense against this pathogen.innate immunity | pathogenesis | intestine | host-pathogen interactions
The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.
Tubulogenesis and lumen formation are critical to the development of most organs. We study Caenorhabditis elegans vulval and uterine development to probe the complex mechanisms that mediate these events. Development of the vulva and the ventral uterus is coordinated by the inductive cell-signaling activity of a gonadal cell called the anchor cell (AC). We demonstrate that in addition to its function in specifying fate, the AC directly promotes dorsal vulval tubulogenesis. Two types of mutants with defective anchor cell behavior reveal that anchor cell invasion of the vulva is important for forming the toroidal shape of the dorsal vulval cell, vulF. In fos-1 mutants, where the AC cannot breakdown the basement membranes between the gonad and the vulva, and in mutants in unc-6 netrin or its receptor unc-40, which cause AC migration defects, the AC fails to invade the vulva and no lumen is formed in vulF. By examining GFP markers of dorsal vulval cell fate, we demonstrate that fate specification defects do not account for the aberrant vulF shape. We propose that the presence of the AC in the center of the developing vulF toroid is required for dorsal vulval lumen formation to complete vulval tubulogenesis.
Summary Many intracellular pathogens co-opt actin in host cells, but little is known about these interactions in vivo. We study the in vivo trafficking and exit of the microsporidian Nematocida parisii, which is an intracellular pathogen that infects intestinal cells of the nematode Caenorhabditis elegans. We recently demonstrated that N. parisii uses directional exocytosis to escape out of intestinal cells into the intestinal tract. Here, we show that an intestinal-specific isoform of C. elegans actin called ACT-5 forms coats around membrane compartments that contain single exocytosing spores, and that these coats appear to form after fusion with the apical membrane. We performed a genetic screen for host factors required for actin coat formation and identified small GTPases important for this process. Through analysis of animals defective in these factors, we found that actin coats are not required for pathogen exit although they may boost exocytic output. Later during infection, we find that ACT-5 also forms coats around membrane-bound vesicles that contain multiple spores. These vesicles are likely formed by clathrin-dependent compensatory endocytosis to retrieve membrane material that has been trafficked to the apical membrane as part of the exocytosis process. These findings provide insight into microsporidia interaction with host cells, and provide novel in vivo examples of the manner in which intracellular pathogens co-opt host actin during their life cycle.
Vulval morphogenesis in Caenorhabditis elegans generates a stack of toroidal cells enclosing a tubular lumen. Mutation of egl-26 is associated with malformation of vulF, the most dorsal toroid in the stack, resulting in a blocked lumen and an egg-laying defect. Here we present evidence that vulF retains the expected gene expression pattern, functions in signaling to the uterus and retains proper polarity when egl-26 is mutated, all suggesting that mutation of egl-26 specifically results in aberrant morphogenesis as opposed to abnormal fate specification. Recent computational analysis indicates that EGL-26, which was previously characterized as novel, belongs to the LRAT (lecithin retinol acyltransferase) subfamily of the NlpC/P60 superfamily of catalytic proteins. Via site-directed mutagenesis, we demonstrate a requirement of the putative catalytic residues for EGL-26 function in vivo. We also show that mutation of conserved serine 275 perturbs the apical membrane localization and the function of the EGL-26 protein. Additional mutagenesis of this residue suggests that EGL-26 attains its membrane localization via a mechanism distinct from that of LRAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.