The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+–sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.
In mitochondria, the sirtuin SIRT5 is an NAD-dependent protein deacylase that controls several metabolic pathways. Although a wide range of SIRT5 targets have been identified, the overall function of SIRT5 in organismal metabolic homeostasis remains unclear. Given that SIRT5 expression is highest in the heart and that sirtuins are commonly stress-response proteins, we used an established model of pressure overload-induced heart muscle hypertrophy caused by transverse aortic constriction (TAC) to determine SIRT5's role in cardiac stress responses. Remarkably, SIRT5KO mice had reduced survival upon TAC compared with wild-type mice but exhibited no mortality when undergoing a sham control operation. The increased mortality with TAC was associated with increased pathological hypertrophy and with key abnormalities in both cardiac performance and ventricular compliance. By combining high-resolution MS-based metabolomic and proteomic analyses of cardiac tissues from wild-type and SIRT5KO mice, we found several biochemical abnormalities exacerbated in the SIRT5KO mice, including apparent decreases in fatty acid oxidation and glucose oxidation as well as an overall decrease in mitochondrial NAD/NADH. Together, these abnormalities suggest that SIRT5 deacylates protein substrates involved in cellular oxidative metabolism to maintain mitochondrial energy production. Overall, the functional and metabolic results presented here suggest an accelerated development of cardiac dysfunction in SIRT5KO mice in response to TAC, explaining increased mortality upon cardiac stress. Our findings reveal a key role for SIRT5 in maintaining cardiac oxidative metabolism under pressure overload to ensure survival.
SUMMARY Sirtuins are a class of NAD+-dependent deacetylases, such as deacetylases, that have a wide array of biological functions. Recent studies have suggested that reduced sirtuin action is correlated with Type 2 diabetes. Both overnutrition and aging, which are two major risk factors for diabetes, lead to decreased sirtuin function and result in abnormal glucose and lipid metabolism. Therefore, restoring normal levels of sirtuin action in Type 2 diabetes may be a promising method of treating diabetes. This article reviews the biological functions of three of the seven mammalian sirtuins – SIRT1, SIRT3 and SIRT6 – that have demonstrated prominent metabolic roles and early potential for drug targeting. Clinical trials investigating the use of sirtuin activators for treating diabetes are already underway and show promise as alternatives to current diabetes therapies. Thus, further research into sirtuin activators is warranted and may lead to a new class of safe, effective diabetes treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.