Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome characterized by excessive maternal immune system activation, inflammation, and endothelial dysfunction. Toll-like receptor (TLR) 3 activation by double-stranded RNA (dsRNA) and TLR7/8 activation by single-stranded RNA (ssRNA) expressed by viruses and/or released from necrotic cells initiates a pro-inflammatory immune response; however it is unknown whether viral/endogenous RNA is a key initiating signal that contributes to the development of PE. We hypothesized that TLR3/7/8 activation will be evident in placentas of women with PE, and sufficient to induce PE-like symptoms in mice. Placental immunoreactivity and mRNA levels of TLR3, TLR7, and TLR8 were increased significantly in women with PE compared to normotensive women. Treatment of human trophoblasts with the TLR3 agonist polyinosine-polycytidylic acid (poly I:C), the TLR7-specific agonist imiquimod (R-837), or the TLR7/8 agonist CLO97 significantly increased TLR3/7/8 levels. Treatment of mice with poly I:C, R-837, or CLO97 caused pregnancy-dependent hypertension, endothelial dysfunction, splenomegaly, and placental inflammation. These data demonstrate that RNA-mediated activation of TLR3 and TLR7/8 plays a key role in the development of PE.
Abstract-Preeclampsia may result from overactivation of the maternal immune system and is characterized by endothelial dysfunction and excessive inflammation. Given the importance of maternal immune system regulation and antiinflammatory cytokines in normotensive pregnancies, we hypothesized that maternal immune system activation via Toll-like receptor 3 during pregnancy would cause preeclampsia-like symptoms in mice, which would be made worse by deficiency of the anti-inflammatory cytokine interleukin 10. The Toll-like receptor 3 agonist polyinosinepolycytidylic acid (poly I:C) caused hypertension, endothelial dysfunction, and proteinuria in mice only when pregnant.In the absence of poly I:C, pregnant interleukin 10 knockout mice exhibited a significant increase in systolic blood pressure, endothelial dysfunction, and serum proinflammatory cytokines, as well as aortic and placental platelet-endothelial cell adhesion molecule expression compared with pregnant wild-type mice. Deficiency of interleukin 10 further augmented these measures in poly I:C-treated pregnant mice. In addition, sera from poly I:C-treated pregnant wild-type mice significantly decreased relaxation responses and increased platelet-endothelial cell adhesion molecule expression in isolated aortas from nonpregnant wild-type mice, and these effects were augmented by sera from poly I:C-treated interleukin 10 knockout mice. Coincubation with recombinant interleukin 10 normalized relaxation responses and platelet-endothelial cell adhesion molecule expression in all of the groups. Collectively, Toll-like receptor 3 activation during pregnancy causes preeclampsia-like symptoms, which are exacerbated by the absence of interleukin 10. Exogenous interleukin 10 treatment had beneficial effects on endothelial function and may be beneficial in women with preeclampsia. Key Words: interleukin 10 Ⅲ endothelium Ⅲ hypertension Ⅲ pregnancy-induced Ⅲ inflammation Ⅲ pregnancy Ⅲ preeclampsia H ypertensive disorders of pregnancy, such as preeclampsia (PE), affect Ϸ10% of all pregnancies, are one of the leading causes of fetal morbidity and mortality, and cause 15% to 20% of maternal deaths worldwide. 1 PE is diagnosed by new-onset hypertension and proteinuria during pregnancy and is associated with endothelial dysfunction, excessive inflammation, and abnormal fetal development. [2][3][4][5] Although the etiology of PE remains unknown, evidence strongly supports a role for the maternal immune system. 6 PE is more common in women with autoimmune diseases and during the first conception, and conversely, the incidence of PE is decreased in women with immune deficiency
Arteriolar hyalinosis is a common histological finding in renal transplant recipients treated with the calcineurin inhibitor tacrolimus; however, the pathophysiologic mechanisms remain unknown. In addition to increasing transforming growth factor (TGF)-β levels, tacrolimus inhibits calcineurin by binding to FK506 binding protein 12 (FKBP12). FKBP12 alone also inhibits TGF-β receptor activation. Here we tested whether tacrolimus binding to FKBP12 removes an inhibition of the TGF-β receptor, allowing ligand binding, ultimately leading to receptor activation and arteriolar hyalinosis. We found that specific deletion of FKBP12 from endothelial cells was sufficient to activate endothelial TGF-β receptors and induce renal arteriolar hyalinosis in these knockout mice, similar to that induced by tacrolimus. Tacrolimus-treated and knockout mice exhibited significantly increased levels of aortic TGF-β receptor activation as evidenced by SMAD2/3 phosphorylation, along with increased collagen and fibronectin expression compared to controls. Treatment of isolated mouse aortas with tacrolimus increased TGF-β receptor activation, collagen and fibronectin expression. These effects were independent of calcineurin, absent in endothelial denuded aortic rings, and could be prevented by the small molecule TGF-β receptor inhibitor SB-505124. Thus endothelial cell TGF-β receptor activation is sufficient to cause vascular remodeling and renal arteriolar hyalinosis.
Pre-eclampsia, the development of hypertension and proteinuria or end-organ damage during pregnancy, is a leading cause of both maternal and fetal morbidity and mortality, and there are no effective clinical treatments for pre-eclampsia aside from delivery. The development of pre-eclampsia is characterized by maladaptation of the maternal immune system, excessive inflammation and endothelial dysfunction. We have reported that detection of extracellular RNA by the Toll-like receptors (TLRs) 3 and 7 is a key initiating signal that contributes to the development of pre-eclampsia. PLacental eXpanded (PLX-PAD) cells are human placenta-derived, mesenchymal-like, adherent stromal cells that have anti-inflammatory, proangiogenic, cytoprotective and regenerative properties, secondary to paracrine secretion of various molecules in response to environmental stimulation. We hypothesized that PLX-PAD cells would reduce the associated inflammation and tissue damage and lower blood pressure in mice with pre-eclampsia induced by TLR3 or TLR7 activation. Injection of PLX-PAD cells on gestational day 14 significantly decreased systolic blood pressure by day 17 in TLR3-induced and TLR7-induced hypertensive mice (TLR3 144-111 mmHg; TLR7 145-106 mmHg; both P<0.05), and also normalized their elevated urinary protein:creatinine ratios (TLR3 5.68-3.72; TLR7 5.57-3.84; both P<0.05). On gestational day 17, aortic endothelium-dependent relaxation responses improved significantly in TLR3-induced and TLR7-induced hypertensive mice that received PLX-PAD cells on gestational day 14 (TLR3 35-65%; TLR7 37-63%; both P<0.05). In addition, markers of systemic inflammation and placental injury, increased markedly in both groups of TLR-induced hypertensive mice, were reduced by PLX-PAD cells. Importantly, PLX-PAD cell therapy had no effects on these measures in pregnant control mice or on the fetuses. These data demonstrate that PLX-PAD cell therapy can safely reverse pre-eclampsia-like features during pregnancy and have a potential therapeutic role in pre-eclampsia treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.