Estrogen has direct and indirect effects on mitochondrial activity, but the mechanisms mediating these effects remain unclear. Others reported that long-term estradiol (E(2)) treatment increased nuclear respiratory factor-1 (NRF-1) protein in cerebral blood vessels of ovariectomized rats. NRF-1 is a transcription factor that regulates the expression of nuclear-encoded mitochondrial genes, e.g. mitochondrial transcription factor A (TFAM), that control transcription of the mitochondrial genome. Here we tested the hypothesis that E(2) increases NRF-1 transcription resulting in a coordinate increase in the expression of nuclear- and mitochondrial- encoded genes and mitochondrial respiratory activity. We show that E(2) increased NRF-1 mRNA and protein in MCF-7 breast and H1793 lung adenocarcinoma cells in a time-dependent manner. E(2)-induced NRF-1 expression was inhibited by the estrogen receptor (ER) antagonist ICI 182,780 and actinomycin D but not by phosphoinositide-3 kinase and MAPK inhibitors, indicating a genomic mechanism of E(2) regulation of NRF-1 transcription. An estrogen response element (ERE) in the NRF-1 promoter bound ER alpha and ER beta in vitro, and E(2) induced ER alpha and ER beta recruitment to this ERE in chromatin immunoprecipitation assays in MCF-7 cells. The NRF-1 ERE activated reporter gene expression in transfected cells. Small interfering RNA to ER alpha and ER beta revealed that ER alpha mediates E(2)-induced NRF-1 transcription. The E(2)-induced increase in NRF-1 was followed by increased TFAM and the transcription of Tfam-regulated mitochondrial DNA-encoded COI and NDI genes and increased mitochondrial biogenesis. Knockdown of NRF-1 blocked E(2) stimulation of mitochondrial biogenesis and activity, indicating a mechanism by which estrogens regulate mitochondrial function by increasing NRF-1 expression.
One mechanism by which ligand-activated estrogen receptors and (ER and ER ) stimulate gene transcription is through direct ER interaction with specific DNA sequences, estrogen response elements (EREs). ERE-bound ER recruits coactivators that stimulate gene transcription. Binding of ER to natural and synthetic EREs with different nucleotide sequences alters ER binding affinity, conformation, and transcriptional activity, indicating that the ERE sequence is an allosteric effector of ER action. Here we tested the hypothesis that alterations in ER conformation induced by binding to different ERE sequences modulates ER interaction with coactivators and corepressors. CHO-K1 cells transfected with ER or ER show ERE sequence-dependent differences in the functional interaction of ER and ER with coactivators steroid receptor coativator 1 (SRC-1), SRC-2 (glucocorticoid receptor interacting protein 1 (GRIP1)), SRC-3 amplified in breast cancer 1 (AIB1) and ACTR, cyclic AMP binding protein (CBP), and steroid receptor RNA activator (SRA), corepressors nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid hormone recpetors (SMRT), and secondary coactivators coactivator associated arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 (PRMT1). We note both ligand-independent as well estradiol-and 4-hydroxytamoxifen-dependent differences in ER-coregulator activity. In vitro ER-ERE binding assays using receptor interaction domains of these coregulators failed to recapitulate the cell-based results, substantiating the importance of the full-length proteins in regulating ER activity. These data demonstrated that the ERE sequence impacts estradioland 4-hydroxytamoxifen-occupied ER and ER interaction with coregulators as measured by transcriptional activity in mammalian cells.
The higher frequency of lung adenocarcinoma in women smokers than in men smokers suggests a role for gender-dependent factors in the etiology of lung cancer. We evaluated estrogen receptor (ER) a and b expression and activity in human lung adenocarcinoma cell lines and normal lung fibroblasts. Full-length ERa and ERb proteins were expressed in all cell lines with higher ERb than ERa. Although estradiol (E 2 ) binding was similar, E 2 stimulated proliferation only in cells from females, and this response was inhibited by anti-estrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780. In contrast, E 2 did not stimulate replication of lung adenocarcinoma cells from males and 4-OHT or ICI did not block cell proliferation. Similarly, transcription of an estrogen response element-driven reporter gene was stimulated by E 2 in lung adenocarcinoma cells from females, but not males. Progesterone receptor (PR) expression was increased by E 2 in two out of five adenocarcinoma cell lines from females, but none from males. E 2 decreased E-cadherin protein expression in some of the cell lines from females, as it did in MCF-7 breast cancer cells, but not in the cell lines from males. Thus, ERa and ERb expression does not correlate with the effect of ER ligands on cellular activities in lung adenocarcinoma cells. On the other hand, coactivator DRIP205 expression was higher in lung adenocarcinoma cells from females versus males and higher in adenocarcinoma cells than in normal human bronchial epithelial cells. DRIP205 and other ER coregulators may contribute to differences in estrogen responsiveness between lung adenocarcinoma cells in females and males.
Little is known about endogenous estrogen receptor β (ERβ) gene targets in human breast cancer. We reported that estradiol (E(2)) induces nuclear respiratory factor-1 (NRF-1) transcription through ERα in MCF-7 breast cancer cells. Here we report that 4-hydroxytamoxifen (4-OHT), with an EC(50) of ~1.7 nM, increases NRF-1 expression by recruiting ERβ, cJun, cFos, CBP, and RNA polymerase II to and dismissing NCoR from the NRF1 promoter. Promoter deletion and transient transfection studies showed that the estrogen response element (ERE) is essential and that an adjacent AP-1 site contributes to maximal 4-OHT-induced NRF-1 transcription. siRNA knockdown of ERβ revealed that ERβ inhibits basal NRF-1 expression and is required for 4-OHT-induced NRF-1 transcription. An AP-1 inhibitor blocked 4-OHT-induced NRF-1 expression. The 4-OHT-induced increase in NRF-1 resulted in increased transcription of NRF-1 target CAPNS1 but not CYC1, CYC2, or TFAM despite increased NRF-1 coactivator PGC-1α protein. The absence of TFAM induction corresponds to a lack of Akt-dependent phosphorylation of NRF-1 with 4-OHT treatment. Overexpression of NRF-1 inhibited 4-OHT-induced apoptosis and siRNA knockdown of NRF-1 increased apoptosis, indicating an antiapoptotic role for NRF-1. Overall, NRF-1 expression and activity is regulated by 4-OHT via endogenous ERβ in MCF-7 cells.
Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.