Compared with conventional optical methods, optics implemented on microfluidic chips provide small, and often much cheaper ways to interrogate biological systems from the level of single molecules up to small model organisms. The optical probing of single molecules has been used to investigate the mechanical properties of individual biological molecules; however, multiplexing of these measurements through microfluidics and nanofluidics confers many analytical advantages. Optics-integrated microfluidic systems can significantly simplify sample processing and allow a more user-friendly experience; alignments of on-chip optical components are predetermined during fabrication and many purely optical techniques are passively controlled. Furthermore, sample loss from complicated preparation and fluid transfer steps can be virtually eliminated, a particularly important attribute for biological molecules at very low concentrations. Excellent fluid handling and high surface area/volume ratios also contribute to faster detection times for low abundance molecules in small sample volumes. Although integration of optical systems with classical microfluidic analysis techniques has been limited, microfluidics offers a ready platform for interrogation of biophysical properties. By exploiting the ease with which fluids and particles can be precisely and dynamically controlled in microfluidic devices, optical sensors capable of unique imaging modes, single molecule manipulation, and detection of minute changes in concentration of an analyte are possible.
Robust and accurate behavioral tracking is essential for ethological studies. Common methods for tracking and extracting behavior rely on user adjusted heuristics that can significantly vary across different individuals, environments, and experimental conditions. As a result, they are difficult to implement in large-scale behavioral studies with complex, heterogenous environmental conditions. Recently developed deep-learning methods for object recognition such as Faster R-CNN have advantages in their speed, accuracy, and robustness. Here, we show that Faster R-CNN can be employed for identification and detection of Caenorhabditis elegans in a variety of life stages in complex environments. We applied the algorithm to track animal speeds during development, fecundity rates and spatial distribution in reproductive adults, and behavioral decline in aging populations. By doing so, we demonstrate the flexibility, speed, and scalability of Faster R-CNN across a variety of experimental conditions, illustrating its generalized use for future large-scale behavioral studies.
We report a generic smartphone app for quantitative annotation of complex images. The app is simple enough to be used by children, and annotation tasks are distributed across app users, contributing to efficient annotation. We demonstrate its flexibility and speed by annotating >30,000 images, including features of rice root growth and structure, stem cell aggregate morphology, and complex worm (Caenorhabditis elegans) postures, for which we show that the speed of annotation is >130-fold faster than state-of-the-art techniques with similar accuracy.
Robust and accurate behavioral tracking is essential for ethological studies. Common methods for tracking and extracting behavior rely on user adjusted heuristics that can significantly vary across different individuals, environments, and experimental conditions. As a result, they are difficult to implement in large-scale behavioral studies with complex, heterogenous environmental conditions. Recently developed deep-learning methods for object recognition such as Faster R-CNN have advantages in their speed, accuracy, and robustness. Here, we show that Faster R-CNN can be employed for identification and detection of Caenorhabditis elegans in a variety of life stages in complex environments. We applied the algorithm to track animal speeds during development, fecundity rates and spatial distribution in reproductive adults, and behavioral decline in aging populations. By doing so, we demonstrate the flexibility, speed, and scalability of Faster R-CNN across a variety of experimental conditions, illustrating its generalized use for future large-scale behavioral studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.