Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the potential to accelerate the pace of human health safety evaluation by informing screening-level assessments. The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals. PODs derived from new approach methodologies (NAMs) were obtained for this comparison using the 50th (PODNAM, 50) and the 95th (PODNAM, 95) percentile credible interval estimates for the steady-state plasma concentration used in in vitro to in vivo extrapolation of administered equivalent doses. Of the 448 substances, 89% had a PODNAM, 95 that was less than the traditional POD (PODtraditional) value. For the 48 substances for which PODtraditional < PODNAM, 95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, and there was an enrichment of chemical structural features associated with organophosphate and carbamate insecticides. When PODtraditional < PODNAM, 95, it did not appear to result from an enrichment of PODtraditional based on a particular study type (eg, developmental, reproductive, and chronic studies). Bioactivity:exposure ratios, useful for identification of substances with potential priority, demonstrated that high-throughput exposure predictions were greater than the PODNAM, 95 for 11 substances. When compared with threshold of toxicological concern (TTC) values, the PODNAM, 95 was greater than the corresponding TTC value 90% of the time. This work demonstrates the feasibility, and continuing challenges, of using in vitro bioactivity as a protective estimate of POD in screening-level assessments via a case study.
ObjectiveWe conducted a review of the history and performance of developmental neurotoxicity (DNT) testing in support of the finalization and implementation of Organisation of Economic Co-operation and Development (OECD) DNT test guideline 426 (TG 426).Information sources and analysisIn this review we summarize extensive scientific efforts that form the foundation for this testing paradigm, including basic neurotoxicology research, interlaboratory collaborative studies, expert workshops, and validation studies, and we address the relevance, applicability, and use of the DNT study in risk assessment.ConclusionsThe OECD DNT guideline represents the best available science for assessing the potential for DNT in human health risk assessment, and data generated with this protocol are relevant and reliable for the assessment of these end points. The test methods used have been subjected to an extensive history of international validation, peer review, and evaluation, which is contained in the public record. The reproducibility, reliability, and sensitivity of these methods have been demonstrated, using a wide variety of test substances, in accordance with OECD guidance on the validation and international acceptance of new or updated test methods for hazard characterization. Multiple independent, expert scientific peer reviews affirm these conclusions.
Hippocampal lesions in rats lead to an impairment of performance in spatial delayed conditional discriminations. The effect of such lesions on nonspatial tasks is controversial. In monkeys, both the hippocampus and the amygdala are involved in nonspatial delayed conditional discriminations. The effect of amygdaloid lesions in rats on this type of task has not been studied. To clarify the role of hippocampus and amygdala in a cue-relevant/space-irrelevant delayed conditional discrimination, rats were trained on a delayed match-to-sample task with visual and tactile cues as discriminative stimuli. Rats were then given one of five lesions: control, complete fimbria-fornix, partial fimbria-fornix, complete amygdala, or partial amygdala. Amygdaloid lesions, partial or complete, did not impair choice accuracy. Fimbria-fornix lesions did impair choice accuracy, and the magnitude and duration of the impairment was a function of the size of the lesion. Partial fimbria-fornix lesions produced a slight impairment that disappeared with continued testing. Complete fimbria-fornix lesions produced chance performance throughout postoperative testing. These results indicate that the fimbria-fornix, but not the amygdala, is involved in nonspatial delayed match-to-sample.
The course of decline was studied in 16 patients with probable or definite dementia of the Alzheimer type (DAT) over 2.7 to 6.8 years from first to last evaluation. Overall severity of dementia was measured with the Wechsler Adult Intelligence Scale (WAIS), the Dementia Rating Scale (DRS), and the Mini-Mental State Examination (MMSE), at approximately annual intervals. An initial plateau phase, during which language and cognitive functions did not change for periods of 9 to 35 months, was observed in 5 patients who initially had an isolated memory impairment without significant impairment of nonmemory language or visuospatial function. Once nonmemory functions began to decline, the rate of decline was remarkably steady in most individual patients but varied markedly among patients. The initial rate of decline after the plateau phase, as measured with the WAIS and DRS, was a significant predictor of subsequent rate in individual patients (r = .66, p less than .01, and r = .67, p less than .01, for the WAIS and DRS, respectively). The MMSE was a less reliable measure of longitudinal change in dementia severity and did not predict future rates of decline (r = .29). These results demonstrate a biphasic trajectory of decline in patients with DAT. Stable interindividual differences in rate of decline may provide a basis for designing more sensitive studies of treatments intended to slow or halt the progress of DAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.