In vivo bioluminescence imaging is becoming a very important tool for the study of a variety of cellular and molecular events or disease processes in living systems. In vivo bioluminescence imaging is based on the detection of light emitted from within an animal. The light is generated as a product of the luciferase-luciferin reaction taking place in a cell. In this study, we implanted mice with tumour cells expressing either a high or a low level of luciferase. In vivo bioluminescence imaging was used to follow tumour progression. Repeated luciferin injection and imaging of high and low luciferase-expressing tumours was performed. While low luciferase-expressing tumours grew similarly to vector controls, growth of the high luciferase-expressing tumours was severely inhibited. The observation that a high level of luciferase expression will inhibit tumour cell growth when an animal is subjected to serial in vivo bioluminescence imaging is potentially an important factor in designing these types of studies.
Studies on nontumorigenic and tumorigenic human cell hybrids derived from the fusion of HeLa (a cervical cancer cell line) with GM00077 (a normal skin fibroblast cell line) have demonstrated "functional" tumor-suppressor activity on chromosome 11. It has been shown that several of the neoplastically transformed radiation-induced hybrid cells called GIMs (gamma ray induced mutants), isolated from the nontumorigenic CGL1 cells, have lost one copy of the fibroblast chromosome 11. We hypothesized, therefore, that the remaining copy of the gene might be mutated in the cytogenetically intact copy of fibroblast chromosome 11. Because a cervical cancer tumor suppressor locus has been localized to chromosome band 11q13, we performed deletion-mapping analysis of eight different GIMs using a total of 32 different polymorphic and microsatellite markers on the long arm (q arm) of chromosome 11. Four irradiated, nontumorigenic hybrid cell lines, called CONs, were also analyzed. Allelic deletion was ascertained by the loss of a fibroblast allele in the hybrid cell lines. The analysis confirmed the loss of a fibroblast chromosome 11 in five of the GIMs. Further, homozygous deletion (complete loss) of chromosome band 11q13 band sequences, including that of D11S913, was observed in two of the GIMs. Detailed mapping with genomic sequences localized the homozygous deletion to a 5.7-kb interval between EST AW167735 and EST F05086. Southern blot hybridization using genomic DNA probes from the D11S913 locus confirmed the existence of homozygous deletion in the two GIM cell lines. Additionally, PCR analysis showed a reduction in signal intensity for a marker mapped 31 kb centromeric of D11S913 in four other GIMs. Finally, Northern blot hybridization with the genomic probes revealed the presence of a novel >15-kb transcript in six of the GIMs. These transcripts were not observed in the nontumorigenic hybrid cell lines. Because the chromosome 11q13 band deletions in the tumorigenic hybrid cell lines overlapped with the minimal deletion in cervical cancer, the data suggest that the same gene may be involved in the development of cervical cancer and in radiation-induced carcinogenesis. We propose that a gene localized in proximity to the homozygous deletion is the candidate tumor-suppressor gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.