Over the course of human history and in most societies, fermented beverages have had a unique economic and cultural importance. Before the arrival of the first Europeans in Australia, Aboriginal people reportedly produced several fermented drinks including mangaitch from flowering cones of Banksia and way-a-linah from Eucalyptus tree sap. In the case of more familiar fermented beverages, numerous microorganisms, including fungi, yeast and bacteria, present on the surface of fruits and grains are responsible for the conversion of the sugars in these materials into ethanol. Here we describe native microbial communities associated with the spontaneous fermentation of sap from the cider gum Eucalyptus gunnii, a Eucalyptus tree native to the remote Central Plateau of Tasmania. Amplicon-based phylotyping showed numerous microbial species in cider gum samples, with fungal species differing greatly to those associated with winemaking. Phylotyping also revealed several fungal sequences which do not match known fungal genomes suggesting novel yeast species. These findings highlight the vast microbial diversity associated with the Australian Eucalyptus gunnii and the native alcoholic beverage way-a-linah.
Uninoculated wines are regarded as having improved mouthfeel and texture and more complex flavor profiles when compared to wines inoculated with commercial S. cerevisiae strains. Uninoculated fermentation involves a complex microbial succession of yeasts and bacteria during fermentation. Microbial population dynamics are affected by several factors that can ultimately determine if a particular species or strain contributes to wine aroma and flavor. In this work, we have studied the effect of aeration, a common winemaking practice, on the yeast microbiota during uninoculated Chardonnay wine fermentation. The timing of aeration and then aeration intensity were evaluated across two successive vintages. While the timing of aeration significantly impacted fermentation efficiency across oxygen treatments, different levels of aeration intensity only differed when compared to the non-aerated control ferments. Air addition increased the viable cell population size of yeast from the genera Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in both vintages. While in 2019, a high relative abundance was found for Hanseniaspora species in aerated ferments, in 2020, T. delbrueckii was visibly more abundant than other species in response to aeration. Accompanying the observed differences in yeast community structure, the chemical profile of the finished wines was also different across the various aeration treatments. However, excessive aeration resulted in elevated concentrations of ethyl acetate and acetic acid, which would likely have a detrimental effect on wine quality. This work demonstrates the role of aeration in shaping yeast population dynamics and modulating a volatile profile in uninoculated wines, and highlights the need for careful air addition to avoid a negative sensory impact on wine flavor and aroma.
Uninoculated wine fermentations are conducted by a consortium of wine yeast and bacteria that establish themselves either from the grape surface or from the winery environment. Of the additives that are commonly used by winemakers, sulphur dioxide (SO2) represents the main antimicrobial preservative and its use can have drastic effects on the microbial composition of the fermentation. To investigate the effect of SO2 on the resident yeast community of uninoculated ferments, Chardonnay grape juice from 2018 and 2019 was treated with a variety of SO2 concentrations ranging up to 100 mg/L and was then allowed to undergo fermentation, with the yeast community structure being assessed via high-throughput meta-barcoding (phylotyping). While the addition of SO2 was shown to select against the presence of many species of non-Saccharomyces yeasts, there was a clear and increasing selection for the species Hanseniaspora osmophila as concentrations of SO2 rose above 40 mg/L in fermentations from both vintages. Chemical analysis of the wines resulting from these treatments showed significant increases in acetate esters, and specifically the desirable aroma compound 2-phenylethyl acetate, that accompanied the increase in abundance of H. osmophila. The ability to modulate the yeast community structure of an uninoculated ferment and the resulting chemical composition of the final wine, as demonstrated in this study, represents an important tool for winemakers to begin to be able to influence the organoleptic profile of uninoculated wines.
Background and Aims. An OIV resolution provides guidelines on using glutathione as a prefermentation additive when the amount of yeast assimilable nitrogen (YAN) of a juice or must is adequate, to avoid the metabolism of glutathione by the yeast. The effect of YAN concentration on glutathione metabolism by yeast had not been determined. This study explored whether nitrogen management could be used to control glutathione consumption during fermentation. Methods and Results. An HPLC-UV method was developed to quantify reduced L-glutathione (GSH) and oxidised glutathione (GSSG) and used to monitor yeast GSH metabolism during alcoholic fermentation with two yeast strains (AWRI 1688 and AWRI 2861). The addition of GSH had no impact on the fermentation rate of the chemically defined medium, even in a limited YAN environment; however, a decrease in glutathione concentration occurred regardless of YAN concentration. The effect of GSH on volatile sulfur compound formation was yeast strain-dependent. Conclusions. Increasing the YAN status of a chemically defined medium led to a decrease in GSH consumption during fermentation, but the loss of GSH could not be prevented entirely, even with a low initial GSH concentration and high initial YAN. Significance of the Study. In the presence of higher concentrations of GSH during fermentation, there is a risk of forming undesirable fermentative sulfur compounds that are not mitigated through nitrogen supplementation. Thus, it seems unlikely that an argument could be made for the inclusion of GSH in relevant food standards codes as a wine additive especially if a lack of GSH metabolism was a criterion.
Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing wild populations in many countries. Despite this, most modern commercial fermentations are inoculated using monocultures, rather than relying on natural populations, potentially impacting wild population diversity. Here we investigate the genomic landscape of 411 wild S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that commonly exhibited aneuploidy of chromosomes 1, 3, 6 and 9. Assigning wild genomic windows to putative ancestral origin revealed that few closely related commercial lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with the Beer2 clade along with three independent admixture events from potentially endemic Oceanic lineages that last shared an ancestor with modern East Asian S. cerevisiae populations. Our results illustrate how commercial use of microbes can affect local microorganism genetic diversity and demonstrates the presence of non-domesticated, non-European derived lineages of S. cerevisiae in Australian ecological niches that are actively admixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.