SUMMARY It is now established that Bcl11b specifies T cell fate. Here we show that in developing T-cells the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (Thymocyte Differentiation Factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how during developmental progression and tumor suppression non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.
Recent studies have characterized the extensive somatic alterations that arise during cancer. However, the somatic evolution of a tumor may be significantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specific tissues and alteration of specific cancer genes. Among germline-somatic interactions, we find germline variants in RBFOX1 that increase incidence of SF3B1 somatic mutation by eight-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants are associated with a four-fold increased likelihood of somatic mutations in PTEN. In support of this association, we find that PTEN knock-down sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11. Finally, we observe that stratifying patients by germline polymorphisms exposes distinct somatic mutation landscapes, implicating new cancer genes. This study creates a validated resource of inherited variants that govern where and how cancer develops, opening avenues for prevention research.
Summary Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a new function for TyrRS in DNA damage protection. We found that oxidative stress, which often down-regulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to up-regulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressors and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, while restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage.
Objectives Circadian rhythm (CR) was identified by RNA sequencing as the most dysregulated pathway in human osteoarthritis (OA) in articular cartilage. This study examined circadian rhythmicity in cultured chondrocytes and the role of the CR genes NR1D1 and BMAL1 in regulating chondrocyte functions. Methods RNA was extracted from normal and OA-affected human knee cartilage (n=14 each). Expression levels of NR1D1 and BMAL1 mRNA and protein were assessed by quantitative PCR and immunohistochemistry. Human chondrocytes were synchronized and harvested at regular intervals to examine circadian rhythmicity in RNA and protein expression. Chondrocytes were treated with small interfering RNA (siRNA) for NR1D1 or BMAL1, followed by RNA sequencing and analysis of the effects on the TGF-β pathway. Results NR1D1 and BMAL1 mRNA and protein levels were significantly reduced in OA compared to normal cartilage. In cultured human chondrocytes, a clear circadian rhythmicity was observed for NR1D1 and BMAL1. Increased BMAL1 expression was observed after knocking down NR1D1, and decreased NR1D1 levels were observed after knocking down BMAL1. Sequencing of RNA from chondrocytes treated with NR1D1 or BMAL1 siRNA identified 330 and 68 significantly different genes, respectively, and this predominantly affected the TGF-β signaling pathway. Conclusions The circadian rhythm pathway is dysregulated in OA cartilage. Interference with circadian rhythmicity in cultured chondrocytes affects TGF-β signaling, which is a central pathway in cartilage homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.